login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=1..n} lcm(n,k)/n.
33

%I #93 Aug 05 2024 01:56:37

%S 1,2,4,6,11,11,22,22,31,32,56,39,79,65,74,86,137,92,172,116,151,167,

%T 254,151,261,236,274,237,407,221,466,342,389,410,452,336,667,515,550,

%U 452,821,452,904,611,641,761,1082,599,1051,782,956,864,1379,821,1166

%N a(n) = Sum_{k=1..n} lcm(n,k)/n.

%C Sum of numerators of n-th order Farey series (cf. A006842). - _Benoit Cloitre_, Oct 28 2002

%C Equals row sums of triangle A143613. - _Gary W. Adamson_, Aug 27 2008

%C Equals row sums of triangle A159936. - _Gary W. Adamson_, Apr 26 2009

%C Also row sums of triangle A164306. - _Reinhard Zumkeller_, Aug 12 2009

%D H. W. Gould and Temba Shonhiwa, Functions of GCD's and LCM's, Indian J. Math. (Allahabad), 39 (1997), 11-35.

%D H. W. Gould and Temba Shonhiwa, A generalization of Cesaro's function and other results, Indian J. Math. (Allahabad), 39 (1997), 183-194.

%H T. D. Noe, <a href="/A057661/b057661.txt">Table of n, a(n) for n = 1..1000</a>

%H Zachary Franco, <a href="https://doi.org/10.1080/00029890.2019.1583529">Problem 12114</a>, The American Mathematical Monthly, Vol. 126, No. 5 (2019), p. 469; <a href="https://doi.org/10.1080/00029890.2021.1840171">A Dirichlet Series with Reduced Numerators</a>, Solution to Problem 12114 by Tamas Wiandt, ibid., Vol. 128, No. 1 (2021), pp. 91-92.

%H <a href="/index/Lc#lcm">Index entries for sequences related to lcm's</a>.

%F a(n) = (1+A057660(n))/2.

%F a(n) = A051193(n)/n.

%F a(n) = Sum_{d|n} psi(d), where psi(m) = is the sum of totatives of m (A023896). - _Jaroslav Krizek_, Dec 28 2016

%F a(n) = Sum_{i=1..n} denominator(n/i). - _Wesley Ivan Hurt_, Feb 26 2017

%F G.f.: x/(2*(1 - x)) + (1/2)*Sum_{k>=1} k*phi(k)*x^k/(1 - x^k), where phi() is the Euler totient function (A000010). - _Ilya Gutkovskiy_, Aug 31 2017

%F If p is prime, then a(p) = T(p-1) + 1 = p(p-1)/2 + 1, where T(n) = n(n+1)/2 is the n-th triangular number (A000217). - _David Terr_, Feb 10 2019

%F Sum_{k=1..n} a(k) ~ zeta(3) * n^3 / Pi^2. - _Vaclav Kotesovec_, May 29 2021

%F Dirichlet g.f.: zeta(s)*(1 + zeta(s-2)/zeta(s-1))/2 (Franco, 2019). - _Amiram Eldar_, Mar 26 2022

%t Table[Total[Numerator[Range[n]/n]], {n, 55}] (* _Alonso del Arte_, Oct 07 2011 *)

%t f[p_, e_] := (p^(2*e + 1) + 1)/(p + 1); a[n_] := (1 + Times @@ f @@@ FactorInteger[n])/2; Array[a, 100] (* _Amiram Eldar_, Apr 26 2023 *)

%o (Haskell)

%o a057661 n = a051193 n `div` n -- _Reinhard Zumkeller_, Jun 10 2015

%o (Magma) [&+[&+[h: h in [1..d] | GCD(h,d) eq 1]: d in Divisors(n)]: n in [1..100]]; // _Jaroslav Krizek_, Dec 28 2016

%o (PARI) a(n)=sum(k=1,n,lcm(n,k))/n \\ _Charles R Greathouse IV_, Feb 07 2017

%o (Python)

%o from math import lcm

%o def A057661(n): return sum(lcm(n,k)//n for k in range(1,n+1)) # _Chai Wah Wu_, Aug 24 2023

%o (Python)

%o from math import prod

%o from sympy import factorint

%o def A057661(n): return 1+prod((p**((e<<1)+1)+1)//(p+1) for p,e in factorint(n).items())>>1 # _Chai Wah Wu_, Aug 05 2024

%Y Cf. A000010, A000217, A006842, A018804, A023896, A051193, A057660, A143613, A159936, A164306.

%Y See A341316 for another version.

%K easy,nice,nonn

%O 1,2

%A _Henry Gould_, Oct 15 2000

%E More terms from _James A. Sellers_, Oct 16 2000