login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332618
a(n) = Sum_{d|n} lcm(d, n/d) / gcd(d, n/d).
2
1, 4, 6, 9, 10, 24, 14, 20, 19, 40, 22, 54, 26, 56, 60, 41, 34, 76, 38, 90, 84, 88, 46, 120, 51, 104, 60, 126, 58, 240, 62, 84, 132, 136, 140, 171, 74, 152, 156, 200, 82, 336, 86, 198, 190, 184, 94, 246, 99, 204, 204, 234, 106, 240, 220, 280, 228, 232, 118, 540
OFFSET
1,2
FORMULA
a(n) = n * Sum_{d|n} 1 / gcd(d, n/d)^2.
Multiplicative with a(p^e) = (2*p^(e+2) - p^2 - 1)/(p^2 - 1) if e is even, a(p^e) = 2*(p^(e+2) - p)/(p^2 - 1) if e is odd. - Sebastian Karlsson, May 07 2022
From Peter Bala, Jan 24 2024: (Start)
a(n) = Sum_{d divides n} A007913(d)*n/d.
Dirichlet g.f.: zeta(2*s)*zeta(s-1)^2/zeta(2*s-2). (End)
MAPLE
a:= n-> n*add(1/igcd(d, n/d)^2, d=numtheory[divisors](n)):
seq(a(n), n=1..80); # Alois P. Heinz, Feb 17 2020
MATHEMATICA
Table[Sum[LCM[d, n/d]/GCD[d, n/d], {d, Divisors[n]}], {n, 1, 60}]
f[p_, e_] := If[EvenQ[e], (2*p^(e+2) - p^2 - 1)/(p^2 - 1), 2*(p^(e+2) - p)/(p^2 - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 05 2022 *)
PROG
(PARI) A332618(n) = sumdiv(n, d, lcm(d, n/d)/gcd(d, n/d)); \\ Antti Karttunen, Nov 12 2021
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Ilya Gutkovskiy, Feb 17 2020
STATUS
approved