login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302990
a(n) = index of first odd prime number in the (n-th)-order Fibonacci sequence Fn, or 0 if no such index exists.
2
0, 0, 4, 6, 9, 10, 40, 14, 17, 19, 361, 23, 90, 26, 373, 47, 288, 34, 75, 38, 251, 43, 67, 47, 74, 310, 511, 151534, 57, 20608, 1146, 62, 197, 94246, 9974, 287, 271172, 758
OFFSET
0,3
COMMENTS
Fn is defined by: Fn(0) = Fn(1) = ... = Fn(n-2) = 0, Fn(n-1) = 1, and Fn(k+1) = Fn(k) + Fn(k-1) + ... + Fn(k-n+1).
In general, Fn(k) is odd iff k == -1 or -2 (mod n+1), therefore a(n) = k*(n+1) - (1 or 2) for all n. Since Fn(n-1) = F(n) = 1, we must have a(n) >= 2n. Since Fn(k) = 2^(k-n) for n <= k < 2n, Fn(2n) = 2^n-1, so a(n) = 2n exactly for the Mersenne prime exponents A000043, while a(n) = 2n+1 when n is not in A000043 but n+1 is in A050414. - M. F. Hasler, Apr 18 2018
Further terms of the sequence: a(38) > 62000, a(39) > 72000, a(40) = 285, a(41) > 178000, a(42) = 558, a(44) = 19529, a(46) = 33369, a(47) = 239, a(48) = 6368, a(53) = 2860, a(54) = 2418, a(58) = 176, a(59) = 18418, a(60) = 1463, a(61) = 122, a(62) = 8755, a(63) = 5118, a(64) = 25089, a(65) = 988, a(66) = 333, a(67) = 406, a(70) = 1632, a(74) = 374, a(76) = 13704, a(77) = 4991, a(86) = 347, a(89) = 178, a(92) = 1114, a(93) = 187, a(98) = 395, a(100) > 80000; a(n) > 10^4 for all other n up to 100. - Jacques Tramu and M. F. Hasler, Apr 18 2018
FORMULA
a(n) == -1 or -2 (mod n+1). a(n) >= 2n, with equality iff n is in A000043. a(n) <= 2n+1 for n+1 in A050414. - M. F. Hasler, Apr 18 2018
EXAMPLE
a(2) = 4 because F2 (Fibonacci) = 0, 1, 1, 2, 3, 5, 8, ... and F2(4) = 3 is prime.
a(3) = 6 because F3 (tribonacci) = 0, 0, 1, 1, 2, 4, 7, 13, ... and F3(6) = 7 is prime.
a(4) = 9 because F4 (tetranacci) = 0, 0, 0, 1, 1, 2, 4, 8, 15, 29, 56, ... and F4(9) = 29 is prime.
From M. F. Hasler, Apr 18 2018: (Start)
We see that Fn(k) = 2^(k-n) for n <= k < 2n and thus Fn(2n) = 2^n-1, so a(n) = 2n exactly for the Mersenne prime exponents A000043.
a(n) = 2n + 1 when 2^(n+1) - 3 is prime (n+1 in A050414) but 2^n-1 is not, i.e., n = 4, 8, 9, 11, 21, 23, 28, 93, 115, 121, 149, 173, 212, 220, 232, 265, 335, 451, 544, 688, 693, 849, 1735, ...
For other primes we have: a(29) = 687*30 - 2, a(37) = 20*38 - 2, a(41) > 10^4, a(43) > 10^4, a(47) = 5*48 - 1, a(53) = 53*54 - 2, a(59) = 307*60 - 2, a(67) = 6*67 - 1. (End)
PROG
(PARI) A302990(n, L=oo, a=vector(n+1, i, if(i<n, 2^i, 1)))={n>1 && for(i=-2+2*n+=1, L, ispseudoprime(a[i%n+1]=2*a[(i-1)%n+1]-a[i%n+1]) && return(i))} \\ Testing primality only for i%n>n-3 is not faster, even for large n. - M. F. Hasler, Apr 17 2018; improved Apr 18 2018
CROSSREFS
Cf. A000045 (F2), A000073 (F3), A000078 (F4), A001591 (F5), A001592 (F6), A122189(F7), A079262 (F8), A104144 (F9), A122265 (F10).
(According to the definition, F0 = A000004 and F1 = A000012.)
Cf. A001605 (indices of prime numbers in F2).
Sequence in context: A131220 A332618 A295329 * A209920 A258979 A258026
KEYWORD
nonn,more
AUTHOR
Jacques Tramu, Apr 17 2018
EXTENSIONS
a(29) from Jacques Tramu, Apr 19 2018
a(33) from Daniel Suteu, Apr 20 2018
a(36) from Jacques Tramu, Apr 25 2018
STATUS
approved