login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332615
Primes prime(k) such that 2*(prime(k)^2 - prime(k-1)^2) is a fourth power.
2
83, 2593, 194483, 388963, 31505923, 57289763, 96059603, 99574273, 169869313, 276922883, 395254163, 414720001, 3264481603, 5125781251, 6059221283, 18233242723, 35888419873, 82012500001, 135304020001, 154550410643, 159004011043, 186320859203, 206710354243, 364488705443
OFFSET
1,1
COMMENTS
This is a subset of A335410.
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 102 terms from Chai Wah Wu)
EXAMPLE
Prime(23)=83. Prime(22)=79. 2*(83^2 - 79^2) = 6^4.
Prime(378)=2593. Prime(377)=2591. 2*(2593^2 - 2591^2) = 12^4.
MATHEMATICA
Select[Prime@Range[2, 500000], IntegerQ@Sqrt[Sqrt[2(#^2 - NextPrime[#, -1]^2)]]&] (* a modification of Giovanni Resta's program for A335410 *)
PROG
(PARI) isok(p) = isprime(p) && ispower(2*(p^2-precprime(p-1)^2), 4); \\ Michel Marcus, Jun 08 2020
(PARI) lista(nn) = {my(pp=2); forprime(p=3, nn, if (ispower(2*(p^2 - pp^2), 4), print1(p, ", ")); pp = p; ); } \\ Michel Marcus, Jun 08 2020
CROSSREFS
Sequence in context: A175662 A103233 A093283 * A156924 A084299 A017799
KEYWORD
nonn
AUTHOR
Jeff Brown, Jun 08 2020
EXTENSIONS
More terms from Amiram Eldar, Jun 08 2020
More terms from Giovanni Resta, Jun 08 2020
STATUS
approved