login
A335410
Primes prime(k) such that 2*(prime(k)^2 - prime(k-1)^2) is a perfect square.
4
11, 19, 73, 83, 227, 443, 883, 1091, 1153, 1931, 2593, 2609, 3529, 4051, 7451, 13691, 15139, 16649, 20809, 26921, 34849, 45377, 46819, 53147, 56171, 69193, 74507, 74531, 83233, 91811, 95483, 103067, 103969, 106937, 110459, 112339, 149059, 149771, 176419, 180001
OFFSET
1,1
COMMENTS
2*(prime(n)^2 - prime(n-1)^2) represents the integer coefficient of the difference in areas between the two circles passing through the origin with centers located at (prime(n), prime(n)) and (prime(n-1), prime(n-1)).
Among the first 200000 primes 2593 and 2609 are the only consecutive primes in this sequence.
LINKS
EXAMPLE
Prime(5) = 11, prime(4) = 7, 2*(11^2 - 7^2) = 12^2, so 11 is in the sequence.
Prime(559) = 4051, prime(558) = 4049, 2*(4051^2 - 4049^2) = 180^2, so 4051 is in the sequence.
MATHEMATICA
Select[Prime@ Range[2, 17000], IntegerQ@ Sqrt[2 (#^2 - NextPrime[#, -1]^2)] &] (* Giovanni Resta, Jun 06 2020 *)
PROG
(PARI) lista(nn) = {my(pp=2); forprime (p=3, nn, if (issquare(2*(p^2 - pp^2)), print1(p, ", ")); pp = p; ); } \\ Michel Marcus, Jun 25 2020
CROSSREFS
Sequence in context: A290078 A089032 A344042 * A106231 A107637 A229542
KEYWORD
nonn
AUTHOR
Jeff Brown, Jun 06 2020
EXTENSIONS
More terms from Giovanni Resta, Jun 06 2020
STATUS
approved