login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335411
a(n) is the number of vertices formed by n-secting the angles of an equilateral triangle.
5
3, 7, 21, 25, 63, 67, 129, 133, 219, 199, 333, 337, 471, 475, 633, 637, 819, 823, 1029, 1009, 1263, 1267, 1521, 1525, 1803, 1807, 2109, 2113, 2439, 2419, 2793, 2797, 3171, 3175, 3573, 3577, 3999, 4003, 4449, 4429, 4923, 4927, 5421, 5425, 5943, 5947, 6489
OFFSET
1,1
COMMENTS
See A277402 for illustrations.
LINKS
FORMULA
Empirically for 12 < n < 500: a(n) = a(n-2) + a(n-10) - a(n-12) + 120.
Conjectures from Colin Barker, Jun 08 2020: (Start)
G.f.: x*(3 + 4*x + 11*x^2 + 24*x^4 + 24*x^6 + 24*x^8 - 24*x^9 + 45*x^10 + 20*x^11 - 11*x^12) / ((1 - x)^3*(1 + x)^2*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-10) - a(n-11) - a(n-12) + a(n-13) for n>13.
(End)
Colin Barker's recurrence conjecture holds for 13 < n <= 500. Lars Blomberg, Jun 12 2020
Empirical: a(2*k - 1) = 3*(4*k^2 - 6*k + 3), for k >= 1. - Ivan N. Ianakiev, Jul 15 2020
CROSSREFS
Cf. A331782, A277402 (regions), A335412 (edges), A335413 (ngons).
Sequence in context: A065496 A322922 A018479 * A331782 A090504 A018548
KEYWORD
nonn
AUTHOR
Lars Blomberg, Jun 08 2020
STATUS
approved