login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A379499
Square array A(n, k) = A064987(A246278(n, k)), read by falling antidiagonals; A064987(n) = n*sigma(n), applied to the prime shift array.
2
6, 28, 12, 72, 117, 30, 120, 360, 775, 56, 180, 1080, 1680, 2793, 132, 336, 672, 19500, 7392, 16093, 182, 336, 3510, 3960, 137200, 24024, 30927, 306, 496, 1584, 43400, 10192, 1948584, 55692, 88723, 380, 702, 9801, 5460, 368676, 40392, 5228860, 116280, 137541, 552, 840, 9300, 488125, 17136, 2928926, 69160, 25645860, 209760, 292537, 870
OFFSET
1,1
COMMENTS
Each column is strictly monotonic.
FORMULA
A(n, k) = A246278(n, k) * A355927(n, k).
EXAMPLE
The top left corner of the array:
k=| 1 2 3 4 5 6 7 8 9 10
2k| 2 4 6 8 10 12 14 16 18 20
--+---------------------------------------------------------------------------------
1 | 6, 28, 72, 120, 180, 336, 336, 496, 702, 840,
2 | 12, 117, 360, 1080, 672, 3510, 1584, 9801, 9300, 6552,
3 | 30, 775, 1680, 19500, 3960, 43400, 5460, 488125, 83790, 102300,
4 | 56, 2793, 7392, 137200, 10192, 368676, 17136, 6725201, 901208, 508326,
5 | 132, 16093, 24024, 1948584, 40392, 2928926, 50160, 235793305, 4082364, 4924458,
PROG
(PARI)
up_to = 55;
A064987(n) = (n*sigma(n));
A246278sq(row, col) = if(1==row, 2*col, my(f = factor(2*col)); for(i=1, #f~, f[i, 1] = prime(primepi(f[i, 1])+(row-1))); factorback(f));
A379499sq(row, col) = A064987(A246278sq(row, col));
A379499list(up_to) = { my(v = vector(up_to), i=0); for(a=1, oo, for(col=1, a, i++; if(i > up_to, return(v)); v[i] = A379499sq(col, (a-(col-1))))); (v); };
v379499 = A379499list(up_to);
A379499(n) = v379499[n];
CROSSREFS
Elementwise product of arrays A246278 and A355927.
Sequence in context: A211679 A379500 A261868 * A342922 A357462 A105402
KEYWORD
nonn,tabl,new
AUTHOR
Antti Karttunen, Jan 02 2025
STATUS
approved