login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215896
Largest k = 2^(m - 1)*(2^m - 1) such that bigomega(k) = n or 0 if no such k exists.
1
1, 0, 6, 28, 0, 496, 0, 8128, 2016, 0, 130816, 0, 2096128, 33550336, 0, 0, 134209536, 8589869056, 0, 137438691328, 0, 0, 0, 34359607296, 35184367894528, 8796090925056, 0, 562949936644096, 2251799780130816, 9007199187632128, 140737479966720, 2305843008139952128, 0
OFFSET
1,3
COMMENTS
Largest k = 2^(m-1)*(2^m-1) such that bigomega(k) = prime(n) or 0 if no such k exists (other version): 6, 28, 496, 8128, 0, 0, 8589869056, 137438691328, 34359607296, 9007199187632128, 2305843008139952128, 0, ...
Mersenne exponents (A000043): numbers n such that omega(2^(n-1)*(2^n-1)) = 2, or bigomega(2^(n-1)*(2^n-1)) = n, or tau(2^(n-1)*(2^n-1)) = 2n, or sigma(2^(n-1)*(2^n-1)) = 2^n*(2^n-1).
Smallest k = 2^(m-1)*(2^m-1) such that bigomega(k) = n or 0 if no such k exists : 1, 0, 6, 28, 0, 120, 0, 8128, 2016, 0, 32640, 0, 523776, 33550336, 0, 0, 8386560, 536854528, 0, 2147450880, 0, 0, 0, 34359607296, 2199022206976, 549755289600, 0, 562949936644096, 2251799780130816,...
EXAMPLE
a(0) = 1 because 2^(1-1)*(2^1-1) = 1 and A001222(1) = 0,
a(2) = 6 because 2^(2-1)*(2^2-1) = 6 and A001222(6) = 2,
a(3) = 28 because 2^(3-1)*(2^3-1) = 28 and A001222(28) = 3,
a(5) = 496 because 2^(4-1)*(2^4-1) = 120, 2^(5-1)*(2^5-1) = 496 and A001222(120) = A001222(496) = 5, 496 > 120.
a(7) = 8128 because 2^(7-1)*(2^7-1) = 8128 and A001222(8128) = 7,
a(8) = 2016 because 2^(6-1)*(2^6-1) = 2016 and A001222(2016) = 8,
a(10) = 130816 because 2^(8-1)*(2^8-1) = 32640, 2^(9-1)*(2^9-1) = 130816 and A001222(32640) = A001222(130816) = 10, 130816 > 32640.
MAPLE
A215896 := proc(n)
local m, k;
for m from n+2 by -1 do
k := 2^(m-1)*(2^m-1) ;
if k < 0 then
return 0 ;
end if;
if numtheory[bigomega](k) = n then
return k ;
end if;
end do:
end proc: # R. J. Mathar, Sep 11 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Gerasimov Sergey, Aug 25 2012.
STATUS
approved