OFFSET
1,3
COMMENTS
Largest k = 2^(m-1)*(2^m-1) such that bigomega(k) = prime(n) or 0 if no such k exists (other version): 6, 28, 496, 8128, 0, 0, 8589869056, 137438691328, 34359607296, 9007199187632128, 2305843008139952128, 0, ...
Mersenne exponents (A000043): numbers n such that omega(2^(n-1)*(2^n-1)) = 2, or bigomega(2^(n-1)*(2^n-1)) = n, or tau(2^(n-1)*(2^n-1)) = 2n, or sigma(2^(n-1)*(2^n-1)) = 2^n*(2^n-1).
Smallest k = 2^(m-1)*(2^m-1) such that bigomega(k) = n or 0 if no such k exists : 1, 0, 6, 28, 0, 120, 0, 8128, 2016, 0, 32640, 0, 523776, 33550336, 0, 0, 8386560, 536854528, 0, 2147450880, 0, 0, 0, 34359607296, 2199022206976, 549755289600, 0, 562949936644096, 2251799780130816,...
EXAMPLE
a(0) = 1 because 2^(1-1)*(2^1-1) = 1 and A001222(1) = 0,
a(2) = 6 because 2^(2-1)*(2^2-1) = 6 and A001222(6) = 2,
a(3) = 28 because 2^(3-1)*(2^3-1) = 28 and A001222(28) = 3,
a(5) = 496 because 2^(4-1)*(2^4-1) = 120, 2^(5-1)*(2^5-1) = 496 and A001222(120) = A001222(496) = 5, 496 > 120.
a(7) = 8128 because 2^(7-1)*(2^7-1) = 8128 and A001222(8128) = 7,
a(8) = 2016 because 2^(6-1)*(2^6-1) = 2016 and A001222(2016) = 8,
MAPLE
A215896 := proc(n)
local m, k;
for m from n+2 by -1 do
k := 2^(m-1)*(2^m-1) ;
if k < 0 then
return 0 ;
end if;
if numtheory[bigomega](k) = n then
return k ;
end if;
end do:
end proc: # R. J. Mathar, Sep 11 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Gerasimov Sergey, Aug 25 2012.
STATUS
approved