login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Largest k = 2^(m - 1)*(2^m - 1) such that bigomega(k) = n or 0 if no such k exists.
1

%I #18 Sep 13 2012 13:13:35

%S 1,0,6,28,0,496,0,8128,2016,0,130816,0,2096128,33550336,0,0,134209536,

%T 8589869056,0,137438691328,0,0,0,34359607296,35184367894528,

%U 8796090925056,0,562949936644096,2251799780130816,9007199187632128,140737479966720,2305843008139952128,0

%N Largest k = 2^(m - 1)*(2^m - 1) such that bigomega(k) = n or 0 if no such k exists.

%C Largest k = 2^(m-1)*(2^m-1) such that bigomega(k) = prime(n) or 0 if no such k exists (other version): 6, 28, 496, 8128, 0, 0, 8589869056, 137438691328, 34359607296, 9007199187632128, 2305843008139952128, 0, ...

%C Mersenne exponents (A000043): numbers n such that omega(2^(n-1)*(2^n-1)) = 2, or bigomega(2^(n-1)*(2^n-1)) = n, or tau(2^(n-1)*(2^n-1)) = 2n, or sigma(2^(n-1)*(2^n-1)) = 2^n*(2^n-1).

%C Smallest k = 2^(m-1)*(2^m-1) such that bigomega(k) = n or 0 if no such k exists : 1, 0, 6, 28, 0, 120, 0, 8128, 2016, 0, 32640, 0, 523776, 33550336, 0, 0, 8386560, 536854528, 0, 2147450880, 0, 0, 0, 34359607296, 2199022206976, 549755289600, 0, 562949936644096, 2251799780130816,...

%e a(0) = 1 because 2^(1-1)*(2^1-1) = 1 and A001222(1) = 0,

%e a(2) = 6 because 2^(2-1)*(2^2-1) = 6 and A001222(6) = 2,

%e a(3) = 28 because 2^(3-1)*(2^3-1) = 28 and A001222(28) = 3,

%e a(5) = 496 because 2^(4-1)*(2^4-1) = 120, 2^(5-1)*(2^5-1) = 496 and A001222(120) = A001222(496) = 5, 496 > 120.

%e a(7) = 8128 because 2^(7-1)*(2^7-1) = 8128 and A001222(8128) = 7,

%e a(8) = 2016 because 2^(6-1)*(2^6-1) = 2016 and A001222(2016) = 8,

%e a(10) = 130816 because 2^(8-1)*(2^8-1) = 32640, 2^(9-1)*(2^9-1) = 130816 and A001222(32640) = A001222(130816) = 10, 130816 > 32640.

%p A215896 := proc(n)

%p local m,k;

%p for m from n+2 by -1 do

%p k := 2^(m-1)*(2^m-1) ;

%p if k < 0 then

%p return 0 ;

%p end if;

%p if numtheory[bigomega](k) = n then

%p return k ;

%p end if;

%p end do:

%p end proc: # _R. J. Mathar_, Sep 11 2012

%Y Cf. A000396, A006516, A046051, A144858.

%K nonn

%O 1,3

%A _Gerasimov Sergey_, Aug 25 2012.