OFFSET
1,1
COMMENTS
All numbers with an odd sum of divisors (either a square or twice a square, A028982) must be terms because for these numbers the two subsets will be of opposite parity. - Robert G. Wilson v, Apr 01 2010
LINKS
Eric Weisstein's World of Mathematics, Abundant Number.
Reinhard Zumkeller, Illustration of initial terms
EXAMPLE
Divisors of n=18: {1,2,3,6,9,18}; 18 is pseudo-perfect (A005835): 18=9+6+3, but there exist no two complementary subsets of divisors having the same sum, therefore 18 is a term.
MATHEMATICA
(* first do *) Needs["Combinatorica`"] (* then *) abQ[n_] := DivisorSigma[1, n] > 2 n; sq2sQ[n_] := IntegerQ@ Sqrt@ n || IntegerQ@ Sqrt@(n/2); fQ[n_] := Block[{d = Divisors@n, lmt = 1 + 2^DivisorSigma[0, n]/2, k, s}, k = 1 + Length@d; s = Plus @@ d/2; While[k < lmt && Plus @@ NthSubset[k, d] != s, k++ ]; If[k == lmt, True, False]]; lst = {}; k = 1; While[k < 10^3, If[abQ@k && sq2sQ@k && fQ@k, AppendTo[lst, k]; Print@k]; k++ ]; lst (* Robert G. Wilson v, Apr 01 2010 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Apr 22 2003
EXTENSIONS
a(21)-a(46) from Robert G. Wilson v, Apr 01 2010
STATUS
approved