OFFSET
1,1
COMMENTS
All [abundant] numbers with an odd sum of divisors (either a square or twice a square, A028982) must be terms because for these numbers the two subsets will be of opposite parity. - Robert G. Wilson v, Apr 01 2010, clarified by Antti Karttunen, Dec 05 2024
LINKS
David A. Corneth, Table of n, a(n) for n = 1..12915 (first 6061 terms from Antti Karttunen)
Antti Karttunen, Table of n, a(n) for n = 1..6061
Eric Weisstein's World of Mathematics, Abundant Number.
Reinhard Zumkeller, Illustration of initial terms
FORMULA
{k such that sigma(k) > 2*k and A083206(k) = 0}. - Antti Karttunen, Dec 04 2024
EXAMPLE
Divisors of n=18: {1,2,3,6,9,18}; 18 is pseudo-perfect (A005835): 18=9+6+3, but there exist no two complementary subsets of divisors having the same sum, therefore 18 is a term.
MATHEMATICA
fQ[n_] := Block[{d = Divisors[n], t, ds, x}, ds = Total[d]; If[Mod[ds, 2] > 0, False, t = CoefficientList[Product[1 + x^i, {i, d}], x]; t[[1 + ds/2]] > 0]]; Select[Range[3042], And[DivisorSigma[1, #] > 2 #, ! fQ[#]] &] (* Michael De Vlieger, Dec 04 2024, after T. D. Noe at A083207 *)
PROG
(PARI)
A083206(n) = { my(s=sigma(n), p=1); if(s%2 || s < 2*n, 0, fordiv(n, d, p *= ('x^d + 'x^-d)); (polcoeff(p, 0)/2)); };
CROSSREFS
Positions of negative terms in A378600.
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Apr 22 2003
EXTENSIONS
a(21)-a(46) from Robert G. Wilson v, Apr 01 2010
Many missing terms inserted, first ones at a(29) = 1206 and a(30) = 1278 - Antti Karttunen, Dec 04 2024
STATUS
approved