login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083211
Abundant numbers (A005101) with no subset of their divisors such that the complement has the same sum.
7
18, 36, 72, 100, 144, 162, 196, 200, 288, 324, 392, 400, 450, 576, 648, 738, 748, 774, 784, 800, 846, 882, 900, 954, 968, 1062, 1098, 1152, 1206, 1278, 1296, 1314, 1352, 1422, 1458, 1494, 1568, 1600, 1602, 1746, 1764, 1800, 1818, 1854, 1926, 1936, 1962, 2034, 2178, 2286, 2304, 2358, 2450, 2466, 2500, 2502, 2592, 2682, 2704, 2718, 2826, 2916, 2934, 3006, 3042
OFFSET
1,1
COMMENTS
A083206(a(n)) = 0; subsequence of A083210.
All [abundant] numbers with an odd sum of divisors (either a square or twice a square, A028982) must be terms because for these numbers the two subsets will be of opposite parity. - Robert G. Wilson v, Apr 01 2010, clarified by Antti Karttunen, Dec 05 2024
LINKS
David A. Corneth, Table of n, a(n) for n = 1..12915 (first 6061 terms from Antti Karttunen)
Eric Weisstein's World of Mathematics, Abundant Number.
Reinhard Zumkeller, Illustration of initial terms
FORMULA
{k such that sigma(k) > 2*k and A083206(k) = 0}. - Antti Karttunen, Dec 04 2024
EXAMPLE
Divisors of n=18: {1,2,3,6,9,18}; 18 is pseudo-perfect (A005835): 18=9+6+3, but there exist no two complementary subsets of divisors having the same sum, therefore 18 is a term.
MATHEMATICA
fQ[n_] := Block[{d = Divisors[n], t, ds, x}, ds = Total[d]; If[Mod[ds, 2] > 0, False, t = CoefficientList[Product[1 + x^i, {i, d}], x]; t[[1 + ds/2]] > 0]]; Select[Range[3042], And[DivisorSigma[1, #] > 2 #, ! fQ[#]] &] (* Michael De Vlieger, Dec 04 2024, after T. D. Noe at A083207 *)
PROG
(PARI)
A083206(n) = { my(s=sigma(n), p=1); if(s%2 || s < 2*n, 0, fordiv(n, d, p *= ('x^d + 'x^-d)); (polcoeff(p, 0)/2)); };
is_A083211(n) = ((sigma(n)>2*n) && (0==A083206(n))); \\ Antti Karttunen, Dec 04 2024
CROSSREFS
Intersection of A005101 and A083210.
Disjoint union of A156903 and A171641. - Amiram Eldar, Jun 20 2020
Positions of negative terms in A378600.
Cf. A000203, A028982, A083206, A378661 (characteristic function).
Sequence in context: A097926 A087967 A070224 * A156903 A204824 A252424
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Apr 22 2003
EXTENSIONS
a(21)-a(46) from Robert G. Wilson v, Apr 01 2010
Many missing terms inserted, first ones at a(29) = 1206 and a(30) = 1278 - Antti Karttunen, Dec 04 2024
STATUS
approved