The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A083209 Numbers with exactly one subset of their sets of divisors such that the complement has the same sum. 6
 6, 12, 20, 28, 56, 70, 88, 104, 176, 208, 272, 304, 368, 464, 496, 550, 650, 736, 836, 928, 992, 1184, 1312, 1376, 1504, 1696, 1888, 1952, 2752, 3008, 3230, 3392, 3770, 3776, 3904, 4030, 4288, 4510, 4544, 4672, 5056, 5170, 5312, 5696, 5830, 6208, 6464 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A083206(a(n))=1; perfect numbers (A000396) are a subset; problem: are weird numbers (A006037) a subset? The weird numbers A006037 are not a subset of this sequence. The first missing weird number is A006037(8) = 10430. - Alois P. Heinz, Oct 29 2009 All numbers of the form p*2^k are in this sequence for k>0 and odd primes p between 2^(k+1)/3 and 2^(k+1). - T. D. Noe, Jul 08 2010 LINKS T. D. Noe, Table of n, a(n) for n=1..407 (terms < 10^6) Eric Weisstein's World of Mathematics, Perfect Number. Eric Weisstein's World of Mathematics, Weird Number. Reinhard Zumkeller, Illustration of initial terms EXAMPLE n=20: 2+4+5+10 = 1+20, 20 is a term (A083206(20)=1). MAPLE with(numtheory): b:= proc(n, l) option remember; local m, ll, i; m:= nops(l); if n<0 then 0 elif n=0 then 1 elif m=0 or add(i, i=l) Nothing]; b[n, ll] + b[n - l[[m]], ll]]]; a[n_] := a[n] = Module[{i, k, l, m, r}, For[k = If[n == 1, 1, a[n-1]+1], True, k++, l = Divisors[k]; {m, r} = QuotientRemainder[Total[l], 2]; If[r==0 && b[m, l]==2, Break[]]]; k]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 50}] (* Jean-François Alcover, Jan 31 2017, after Alois P. Heinz *) CROSSREFS Cf. A005101, A005835, A064771. Sequence in context: A189793 A079760 A109895 * A080714 A116368 A290467 Adjacent sequences:  A083206 A083207 A083208 * A083210 A083211 A083212 KEYWORD nonn AUTHOR Reinhard Zumkeller, Apr 22 2003 EXTENSIONS More terms from Alois P. Heinz, Oct 29 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 29 21:32 EDT 2020. Contains 333117 sequences. (Running on oeis4.)