login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A335199
Infinitary Zumkeller numbers (A335197) whose set of infinitary divisors can be partitioned into two disjoint sets of equal sum in a single way.
5
6, 56, 60, 70, 72, 88, 90, 104, 3040, 3230, 3770, 4030, 4510, 5170, 5390, 5800, 5830, 6808, 7144, 7192, 7400, 7912, 8056, 8968, 9272, 9656, 9928, 10744, 10792, 11016, 11096, 11288, 11392, 12104, 12416, 12928, 13184, 13192, 13696, 13736, 13952, 14008, 14464, 14552
OFFSET
1,1
EXAMPLE
6 is a term since there is only one partition of its set of nonunitary divisors, {1, 2, 3, 6}, into two disjoint sets of equal sum: {1, 2, 3} and {6}.
MATHEMATICA
infdivs[n_] := If[n == 1, {1}, Sort @ Flatten @ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]]; infZumQ[n_] := Module[{d = infdivs[n], sum, x}, sum = Plus @@ d; If[sum < 2*n || OddQ[sum], False, CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] == 2]]; Select[Range[15000], infZumQ] (* after Michael De Vlieger at A077609 *)
CROSSREFS
The infinitary version of A083209.
Subsequence of A335197.
Sequence in context: A183594 A140790 A335217 * A137033 A045526 A164579
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 26 2020
STATUS
approved