login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164579
Integer averages of halves of first cubes of natural numbers (n^3)/2 for some n.
1
6, 56, 81, 198, 480, 578, 950, 1656, 1875, 2646, 3968, 4356, 5670, 7800, 8405, 10406, 13536, 14406, 17238, 21560, 22743, 26550, 32256, 33800, 38726, 46008, 47961, 54150, 63200, 65610, 73206, 84216, 87131, 96278, 109440, 112908, 123750, 139256
OFFSET
1,1
COMMENTS
Also, integers of the form (1/8)*n*(n+1)^2 for some n. - Zak Seidov, Aug 17 2009
FORMULA
G.f.: ( x*(6+50*x+25*x^2+99*x^3+132*x^4+23*x^5+39*x^6+10*x^7) ) / ( (1+x+x^2)^3*(x-1)^4 ). - R. J. Mathar, Jan 25 2011
EXAMPLE
1/2, 9/4, 6, 25/2, 45/2, 147/4, 56, 81, ...
MATHEMATICA
s=0; lst={}; Do[a=(s+=(n^3)/2)/n; If[Mod[a, 1]==0, AppendTo[lst, a]], {n, 3*5!}]; lst
LinearRecurrence[{1, 0, 3, -3, 0, -3, 3, 0, 1, -1}, {6, 56, 81, 198, 480, 578, 950, 1656, 1875, 2646}, 40] (* Harvey P. Dale, Jul 26 2017 *)
Module[{nn=200, ac}, ac=Accumulate[Range[nn]^3/2]; Select[#[[1]]/#[[2]]&/@ Thread[{ac, Range[nn]}], IntegerQ]] (* Harvey P. Dale, Jan 28 2020 *)
PROG
(PARI) forstep(n=3, 150, [4, 1, 3], print1(n*(n+1)^2>>3, ", ")); \\ Charles R Greathouse IV, Nov 02 2009
KEYWORD
nonn,easy
AUTHOR
STATUS
approved