login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164578
Integers of the form (k+1)*(2k+1)/12.
3
10, 23, 65, 94, 168, 213, 319, 380, 518, 595, 765, 858, 1060, 1169, 1403, 1528, 1794, 1935, 2233, 2390, 2720, 2893, 3255, 3444, 3838, 4043, 4469, 4690, 5148, 5385, 5875, 6128, 6650, 6919, 7473, 7758, 8344, 8645, 9263, 9580, 10230, 10563, 11245, 11594
OFFSET
1,1
COMMENTS
This can also be defined as integer averages of the first k halved squares, 1^2/2, 2^2/2, 3^2/2,... , 3^k/2, because sum_{j=1..k} j^2/2 = k*(k+1)*(2k+1)/12. The generating k are in A168489.
FORMULA
a(n) = +a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) +a(n-5). G.f. x*(-10-13*x-22*x^2-3*x^3) / ((1+x)^2*(x-1)^3). - R. J. Mathar, Jan 25 2011
From Colin Barker, Jan 26 2016: (Start)
a(n) = (24*n^2+6*n-(-1)^n*(8*n+1)+1)/4.
a(n) = (12*n^2-n)/2 for n even.
a(n) = (12*n^2+7*n+1)/2 for n odd.
(End)
MATHEMATICA
s=0; lst={}; Do[a=(s+=(n^2)/2)/n; If[Mod[a, 1]==0, AppendTo[lst, a]], {n, 2*6!}]; lst
Select[Table[((n+1)(2n+1))/12, {n, 300}], IntegerQ] (* or *) LinearRecurrence[ {1, 2, -2, -1, 1}, {10, 23, 65, 94, 168}, 60] (* Harvey P. Dale, Jun 14 2017 *)
PROG
(PARI) Vec(x*(10+13*x+22*x^2+3*x^3)/((1-x)^3*(1+x)^2) + O(x^100)) \\ Colin Barker, Jan 26 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved