login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Integers of the form (k+1)*(2k+1)/12.
3

%I #14 Jun 14 2017 11:00:26

%S 10,23,65,94,168,213,319,380,518,595,765,858,1060,1169,1403,1528,1794,

%T 1935,2233,2390,2720,2893,3255,3444,3838,4043,4469,4690,5148,5385,

%U 5875,6128,6650,6919,7473,7758,8344,8645,9263,9580,10230,10563,11245,11594

%N Integers of the form (k+1)*(2k+1)/12.

%C This can also be defined as integer averages of the first k halved squares, 1^2/2, 2^2/2, 3^2/2,... , 3^k/2, because sum_{j=1..k} j^2/2 = k*(k+1)*(2k+1)/12. The generating k are in A168489.

%H Colin Barker, <a href="/A164578/b164578.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1).

%F a(n) = +a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) +a(n-5). G.f. x*(-10-13*x-22*x^2-3*x^3) / ((1+x)^2*(x-1)^3). - _R. J. Mathar_, Jan 25 2011

%F From _Colin Barker_, Jan 26 2016: (Start)

%F a(n) = (24*n^2+6*n-(-1)^n*(8*n+1)+1)/4.

%F a(n) = (12*n^2-n)/2 for n even.

%F a(n) = (12*n^2+7*n+1)/2 for n odd.

%F (End)

%t s=0;lst={};Do[a=(s+=(n^2)/2)/n;If[Mod[a,1]==0,AppendTo[lst,a]],{n,2*6!}];lst

%t Select[Table[((n+1)(2n+1))/12,{n,300}],IntegerQ] (* or *) LinearRecurrence[ {1,2,-2,-1,1},{10,23,65,94,168},60] (* _Harvey P. Dale_, Jun 14 2017 *)

%o (PARI) Vec(x*(10+13*x+22*x^2+3*x^3)/((1-x)^3*(1+x)^2) + O(x^100)) \\ _Colin Barker_, Jan 26 2016

%Y Cf. A078617, A078618, A154293, A164576, A164577.

%K nonn,easy

%O 1,1

%A _Vladimir Joseph Stephan Orlovsky_, Aug 16 2009