The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A335197 Infinitary Zumkeller numbers: numbers whose set of infinitary divisors can be partitioned into two disjoint sets of equal sum. 6
 6, 24, 30, 40, 42, 54, 56, 60, 66, 70, 72, 78, 88, 90, 96, 102, 104, 114, 120, 138, 150, 168, 174, 186, 210, 216, 222, 246, 258, 264, 270, 280, 282, 294, 312, 318, 330, 354, 360, 366, 378, 384, 390, 402, 408, 420, 426, 438, 440, 456, 462, 474, 480, 486, 498, 504 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Amiram Eldar, Table of n, a(n) for n = 1..10000 EXAMPLE 6 is a term since its set of infinitary divisors, {1, 2, 3, 6}, can be partitioned into the two disjoint sets, {1, 2, 3} and {6}, whose sum is equal: 1 + 2 + 3 = 6. MATHEMATICA infdivs[n_] := If[n == 1, {1}, Sort @ Flatten @ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]]; infZumQ[n_] := Module[{d = infdivs[n], sum, x}, sum = Plus @@ d; If[sum < 2*n || OddQ[sum], False, CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]]; Select[Range[500], infZumQ] (* after Michael De Vlieger at A077609 *) CROSSREFS The infinitary version of A083207. Subsequence of A129656. Cf. A077609, A323344. Sequence in context: A114274 A335215 A292985 * A306983 A234648 A110926 Adjacent sequences:  A335194 A335195 A335196 * A335198 A335199 A335200 KEYWORD nonn AUTHOR Amiram Eldar, May 26 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 19:39 EDT 2021. Contains 343988 sequences. (Running on oeis4.)