login
A335215
Bi-unitary Zumkeller numbers: numbers whose set of bi-unitary divisors can be partitioned into two disjoint sets of equal sum.
5
6, 24, 30, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 88, 90, 96, 102, 104, 114, 120, 138, 150, 160, 162, 168, 174, 186, 192, 210, 216, 222, 224, 240, 246, 258, 264, 270, 280, 282, 288, 294, 312, 318, 320, 330, 336, 352, 354, 360, 366, 378, 384, 390, 402
OFFSET
1,1
LINKS
EXAMPLE
6 is a term since its set of bi-unitary divisors, {1, 2, 3, 6}, can be partitioned into 2 disjoint sets, whose sum is equal: 1 + 2 + 3 = 6.
MATHEMATICA
uDivs[n_] := Select[Divisors[n], CoprimeQ[#, n/#] &]; bDivs[n_] := Select[Divisors[n], Last @ Intersection[uDivs[#], uDivs[n/#]] == 1 &]; bzQ[n_] := Module[{d = bDivs[n], sum, x}, sum = Plus @@ d; If[sum < 2*n || OddQ[sum], False, CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]]; Select[Range[10^3], bzQ]
CROSSREFS
The bi-unitary version of A083207.
Subsequence of A292982.
Sequence in context: A228383 A249667 A114274 * A292985 A335197 A364053
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 27 2020
STATUS
approved