login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A335217
Bi-unitary Zumkeller numbers (A335215) whose set of bi-unitary divisors can be partitioned into two disjoint sets of equal sum in a single way.
3
6, 56, 60, 70, 72, 80, 88, 90, 104, 736, 800, 832, 928, 992, 1184, 1312, 1376, 1504, 1568, 1696, 1888, 1952, 3230, 3770, 4030, 4510, 5170, 5390, 5800, 5830, 5888, 6808, 7144, 7192, 7400, 7424, 7912, 8056, 8968, 9272, 9656, 9928, 10744, 10792, 11096, 11288, 11392
OFFSET
1,1
LINKS
EXAMPLE
56 is a term since there is only one partition of its set of bi-unitary divisors, {1, 3, 4, 5, 12, 15, 20, 60}, into 2 disjoint sets whose sum is equal: 1 + 3 + 4 + 5 + 12 + 15 + 20 = 60.
MATHEMATICA
uDivs[n_] := Select[Divisors[n], CoprimeQ[#, n/#] &]; bDivs[n_] := Select[Divisors[n], Last @ Intersection[uDivs[#], uDivs[n/#]] == 1 &]; bzQ[n_] := Module[{d = bDivs[n], sum, x}, sum = Plus @@ d; If[sum < n || OddQ[sum], False, CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] == 2]]; Select[Range[6000], bzQ]
CROSSREFS
The bi-unitary version of A083209.
Subsequence of A335215.
Sequence in context: A255853 A183594 A140790 * A335199 A137033 A045526
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 27 2020
STATUS
approved