login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326143
a(n) = A326142(n) - n, where A326142 gives the sum of all other divisors of n except its largest squarefree divisor.
10
-1, -1, -2, 1, -4, 0, -6, 5, 1, -2, -10, 10, -12, -4, -6, 13, -16, 15, -18, 12, -10, -8, -22, 30, 1, -10, 10, 14, -28, 12, -30, 29, -18, -14, -22, 49, -36, -16, -22, 40, -40, 12, -42, 18, 18, -20, -46, 70, 1, 33, -30, 20, -52, 60, -38, 50, -34, -26, -58, 78, -60, -28, 20, 61, -46, 12, -66, 24, -42, 4, -70, 117, -72, -34, 34, 26, -58, 12
OFFSET
1,3
FORMULA
a(n) = A326142(n) - n = (A000203(n)-A007947(n)) - n = A001065(n) - A007947(n).
a(n) = A066503(n) - A033879(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A013661 - A065463 - 1 = -0.0595081... . - Amiram Eldar, Dec 05 2023
MATHEMATICA
rad[n_] := Times @@ FactorInteger[n][[;; , 1]]; a[n_] := DivisorSigma[1, n] - rad[n] - n; Array[a, 100] (* Amiram Eldar, Dec 05 2023 *)
PROG
(PARI)
A007947(n) = factorback(factorint(n)[, 1]);
A326143(n) = (sigma(n)-A007947(n)-n);
KEYWORD
sign,easy
AUTHOR
Antti Karttunen, Jun 09 2019
STATUS
approved