login
A326067
a(n) = sigma(n) - sigma(A032742(n)) - n, where A032742 gives the largest proper divisor of n, and sigma is the sum of divisors of n.
6
-1, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 4, 0, 2, 3, 0, 0, 8, 0, 4, 3, 2, 0, 8, 0, 2, 0, 4, 0, 18, 0, 0, 3, 2, 5, 16, 0, 2, 3, 8, 0, 22, 0, 4, 9, 2, 0, 16, 0, 12, 3, 4, 0, 26, 5, 8, 3, 2, 0, 36, 0, 2, 9, 0, 5, 30, 0, 4, 3, 26, 0, 32, 0, 2, 18, 4, 7, 34, 0, 16, 0, 2, 0, 44, 5, 2, 3, 8, 0, 66, 7, 4, 3, 2, 5, 32, 0, 16, 9, 24, 0, 42, 0, 8, 39
OFFSET
1,6
FORMULA
a(n) = A326066(n) - n = A000203(n) - A000203(A032742(n)) - n.
a(n) = A326068(n) - A033879(n).
a(p^k) = 0 for all primes and all exponents k >= 1.
PROG
(PARI)
A032742(n) = if(1==n, n, n/vecmin(factor(n)[, 1]));
A326066(n) = (sigma(n) - sigma(A032742(n)));
A326067(n) = (A326066(n) - n);
CROSSREFS
Cf. A000203, A032742, A033879, A246655 (positions of zeros), A326065, A326066, A326068, A326069.
Sequence in context: A219204 A338264 A353509 * A318879 A333783 A088886
KEYWORD
sign
AUTHOR
Antti Karttunen, Jun 06 2019
STATUS
approved