login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326066
a(n) = sigma(n) - sigma(A032742(n)), where A032742 gives the largest proper divisor of n.
6
0, 2, 3, 4, 5, 8, 7, 8, 9, 12, 11, 16, 13, 16, 18, 16, 17, 26, 19, 24, 24, 24, 23, 32, 25, 28, 27, 32, 29, 48, 31, 32, 36, 36, 40, 52, 37, 40, 42, 48, 41, 64, 43, 48, 54, 48, 47, 64, 49, 62, 54, 56, 53, 80, 60, 64, 60, 60, 59, 96, 61, 64, 72, 64, 70, 96, 67, 72, 72, 96, 71, 104, 73, 76, 93, 80, 84, 112, 79, 96, 81, 84, 83
OFFSET
1,2
FORMULA
a(n) = A000203(n) - A326065(n) = A000203(n) - A000203(A032742(n)).
a(1) = 0; for n > 1, if n is of the form p^k (p prime and exponent k >= 1), then a(n) = n, otherwise a(n) > n.
For terms in A247180, i.e., when n = A020639(n) * A032742(n), with the smallest prime factor A020639(n) unitary, a(n) = A020639(n) * A326065(n).
Sum_{k=1..n} a(k) ~ (zeta(2)/2) * (1 - c) * n^2, where c is defined in the corresponding formula in A326065. . - Amiram Eldar, Dec 21 2024
MATHEMATICA
Join[{0}, Table[DivisorSigma[1, n]-DivisorSigma[1, Divisors[n][[-2]]], {n, 2, 100}]] (* Harvey P. Dale, Jan 12 2022 *)
PROG
(PARI)
A032742(n) = if(1==n, n, n/vecmin(factor(n)[, 1]));
A326065(n) = sigma(A032742(n));
A326066(n) = (sigma(n) - sigma(A032742(n)));
CROSSREFS
Cf. A000203, A013661, A020639, A032742, A246655 (positions of fixed points), A247180, A326065, A326067, A326135, A326136.
Sequence in context: A094607 A258831 A098098 * A080785 A319605 A352047
KEYWORD
nonn,changed
AUTHOR
Antti Karttunen, Jun 06 2019
STATUS
approved