Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Dec 21 2024 11:09:51
%S 0,2,3,4,5,8,7,8,9,12,11,16,13,16,18,16,17,26,19,24,24,24,23,32,25,28,
%T 27,32,29,48,31,32,36,36,40,52,37,40,42,48,41,64,43,48,54,48,47,64,49,
%U 62,54,56,53,80,60,64,60,60,59,96,61,64,72,64,70,96,67,72,72,96,71,104,73,76,93,80,84,112,79,96,81,84,83
%N a(n) = sigma(n) - sigma(A032742(n)), where A032742 gives the largest proper divisor of n.
%H Antti Karttunen, <a href="/A326066/b326066.txt">Table of n, a(n) for n = 1..20000</a>
%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>.
%F a(n) = A000203(n) - A326065(n) = A000203(n) - A000203(A032742(n)).
%F a(1) = 0; for n > 1, if n is of the form p^k (p prime and exponent k >= 1), then a(n) = n, otherwise a(n) > n.
%F For terms in A247180, i.e., when n = A020639(n) * A032742(n), with the smallest prime factor A020639(n) unitary, a(n) = A020639(n) * A326065(n).
%F Sum_{k=1..n} a(k) ~ (zeta(2)/2) * (1 - c) * n^2, where c is defined in the corresponding formula in A326065. . - _Amiram Eldar_, Dec 21 2024
%t Join[{0},Table[DivisorSigma[1,n]-DivisorSigma[1,Divisors[n][[-2]]],{n,2,100}]] (* _Harvey P. Dale_, Jan 12 2022 *)
%o (PARI)
%o A032742(n) = if(1==n,n,n/vecmin(factor(n)[,1]));
%o A326065(n) = sigma(A032742(n));
%o A326066(n) = (sigma(n) - sigma(A032742(n)));
%Y Cf. A000203, A013661, A020639, A032742, A246655 (positions of fixed points), A247180, A326065, A326067, A326135, A326136.
%K nonn
%O 1,2
%A _Antti Karttunen_, Jun 06 2019