OFFSET
1,1
COMMENTS
Nineteen initial terms factored:
1: 117 = 3^2 * 13, (3)
2: 775 = 5^2 * 31, (10)
3: 10309 = 13^2 * 61, (39)
4: 56347 = 29^2 * 67, (58)
5: 88723 = 17^2 * 307, (136)
6: 2896363 = 41^2 * 1723, (820)
7: 9597529 = 73^2 * 1801, (1314)
8: 12326221 = 59^2 * 3541, (1711)
9: 12654079 = 113^2 * 991, (904)
10: 25774633 = 71^2 * 5113, (2485)
11: 29817121 = 97^2 * 3169, (2328)
12: 63455131 = 89^2 * 8011, (3916)
13: 105100903 = 101^2 * 10303, (5050)
14: 203822581 = 157^2 * 8269, (6123)
15: 261019543 = 349^2 * 2143, (2094)
16: 296765173 = 131^2 * 17293, (8515)
17: 422857021 = 233^2 * 7789, (6757)
18: 573332713 = 331^2 * 5233, (4965)
19: 782481673 = 167^2 * 28057, (13861).
Note how the quotient (in the rightmost column) seems always to be a multiple of non-unitary prime factor and less than the unitary prime factor.
For p, q prime, if p^2+p+1 = kq and k+1|p-1, then p^2*q is in this sequence. - Charlie Neder, Jun 09 2019
LINKS
MATHEMATICA
Select[Range[15, 10^6 + 1, 2], And[! PrimePowerQ@ #1, Mod[#1 - #2, #2 - #3] == 0] & @@ {#, DivisorSigma[1, #] - #, Divisors[#][[-2]]} &] (* Michael De Vlieger, Jun 22 2019 *)
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 06 2019
EXTENSIONS
More terms from Amiram Eldar, Dec 24 2020
STATUS
approved