Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Dec 24 2020 04:48:12
%S 117,775,10309,56347,88723,2896363,9597529,12326221,12654079,25774633,
%T 29817121,63455131,105100903,203822581,261019543,296765173,422857021,
%U 573332713,782481673,900952687,1129152721,3350861677,3703086229,7395290407,9347001661,9350506057
%N Odd composite numbers n, not squares of primes, such that (A001065(n) - A032742(n)) divides (n - A032742(n)), where A032742 gives the largest proper divisor, and A001065 is the sum of proper divisors.
%C Nineteen initial terms factored:
%C n a(n) factorization A060681(a(n))/A318505(a(n))
%C 1: 117 = 3^2 * 13, (3)
%C 2: 775 = 5^2 * 31, (10)
%C 3: 10309 = 13^2 * 61, (39)
%C 4: 56347 = 29^2 * 67, (58)
%C 5: 88723 = 17^2 * 307, (136)
%C 6: 2896363 = 41^2 * 1723, (820)
%C 7: 9597529 = 73^2 * 1801, (1314)
%C 8: 12326221 = 59^2 * 3541, (1711)
%C 9: 12654079 = 113^2 * 991, (904)
%C 10: 25774633 = 71^2 * 5113, (2485)
%C 11: 29817121 = 97^2 * 3169, (2328)
%C 12: 63455131 = 89^2 * 8011, (3916)
%C 13: 105100903 = 101^2 * 10303, (5050)
%C 14: 203822581 = 157^2 * 8269, (6123)
%C 15: 261019543 = 349^2 * 2143, (2094)
%C 16: 296765173 = 131^2 * 17293, (8515)
%C 17: 422857021 = 233^2 * 7789, (6757)
%C 18: 573332713 = 331^2 * 5233, (4965)
%C 19: 782481673 = 167^2 * 28057, (13861).
%C Note how the quotient (in the rightmost column) seems always to be a multiple of non-unitary prime factor and less than the unitary prime factor.
%C For p, q prime, if p^2+p+1 = kq and k+1|p-1, then p^2*q is in this sequence. - _Charlie Neder_, Jun 09 2019
%H <a href="/index/O#opnseqs">Index entries for sequences where any odd perfect numbers must occur</a>
%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%t Select[Range[15, 10^6 + 1, 2], And[! PrimePowerQ@ #1, Mod[#1 - #2, #2 - #3] == 0] & @@ {#, DivisorSigma[1, #] - #, Divisors[#][[-2]]} &] (* _Michael De Vlieger_, Jun 22 2019 *)
%o (PARI)
%o A032742(n) = if(1==n,n,n/vecmin(factor(n)[,1]));
%o A060681(n) = (n-A032742(n));
%o A318505(n) = if(1==n,0,(sigma(n)-A032742(n))-n);
%o isA326064(n) = if((n%2)&&(2!=isprimepower(n)), my(s=A032742(n), t=sigma(n)-s); (gcd(t-n, n-A032742(n)) == t-n), 0);
%Y Subsequence of A326063.
%Y Cf. A032742, A060681, A246282, A318505.
%Y Cf. also A228058, A325981, A326131, A326141.
%K nonn
%O 1,1
%A _Antti Karttunen_, Jun 06 2019
%E More terms from _Amiram Eldar_, Dec 24 2020