login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324546
An analog of deficiency (A033879) for nonstandard factorization based on the sieve of Eratosthenes (A083221).
9
1, 1, 2, 1, 4, 0, 6, 1, 5, 2, 10, -4, 12, 4, 6, 1, 16, -3, 18, -2, 14, 8, 22, -12, 19, 10, 10, 0, 28, -12, 30, 1, 12, 14, 22, -19, 36, 16, 18, -10, 40, -12, 42, 4, 41, 20, 46, -28, 41, 7, 26, 6, 52, -12, 94, -8, 22, 26, 58, -48, 60, 28, 22, 1, 38, -54, 66, 10, 30, -4, 70, -51, 72, 34, 30, 12, 58, -12, 78, -26, 42, 38, 82, -64, 102, 40, 18, -4, 88
OFFSET
1,3
COMMENTS
Even positions for zeros is given by the even terms of A000396, because they are among the fixed points of permutation A250246. Whether there are any zeros in odd positions depends on whether there are any odd perfect numbers. If such zeros exist, they would not necessarily be in the same positions as in A033879.
FORMULA
a(n) = A033879(A250246(n)) = 2*A250246(n) - A324545(n).
a(n) = A250246(n) - A324535(n).
PROG
(PARI)
up_to = 65539;
ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om, invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om, invec[i], (1+pt))); outvec; };
A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
A055396(n) = if(1==n, 0, primepi(A020639(n)));
v078898 = ordinal_transform(vector(up_to, n, A020639(n)));
A078898(n) = v078898[n];
A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
A250246(n) = if(1==n, n, my(k = 2*A250246(A078898(n)), r = A055396(n)); if(1==r, k, while(r>1, k = A003961(k); r--); (k)));
A324546(n) = { my(k=A250246(n)); (k+k - sigma(k)); };
KEYWORD
sign
AUTHOR
Antti Karttunen, Mar 06 2019
STATUS
approved