login
A243504
Product of parts of integer partitions as ordered by the table A241918: a(n) = Product_{i=A203623(n-1)+2..A203623(n)+1} A241918(i).
6
1, 1, 1, 2, 1, 4, 1, 3, 2, 8, 1, 9, 1, 16, 4, 4, 1, 6, 1, 27, 8, 32, 1, 16, 2, 64, 3, 81, 1, 18, 1, 5, 16, 128, 4, 12, 1, 256, 32, 64, 1, 54, 1, 243, 9, 512, 1, 25, 2, 12, 64, 729, 1, 8, 8, 256, 128, 1024, 1, 48, 1, 2048, 27, 6, 16, 162, 1, 2187, 256, 36, 1, 20, 1, 4096
OFFSET
1,4
LINKS
FORMULA
a(n) = Product_{i=A203623(n-1)+2..A203623(n)+1} A241918(i).
a(n) = A003963(A241909(n)).
a(n) = A227184(A075158(n-1)).
a(A000040(n)) = 1 for all n.
a(A000079(n)) = n for all n.
CROSSREFS
The positions of ones after a(1)=1 is given by A000040 (primes).
Cf. A243503 (the sum of parts), A241918, A227184, A075158, A003963, A241909.
Sequence in context: A021471 A088372 A331601 * A292257 A317837 A296074
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 05 2014
STATUS
approved