Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Dec 04 2023 01:39:26
%S 0,1,1,2,1,4,1,3,3,6,1,5,1,8,7,4,1,9,1,9,9,12,1,2,5,14,8,13,1,16,1,5,
%T 13,18,11,3,1,20,15,8,1,24,1,21,18,24,1,-9,7,27,19,25,1,20,15,14,21,
%U 30,1,-1,1,32,24,6,17,40,1,33,25,40,1,-27,1,38,32,37,17,48,1,-1,22,42,1,9,21,44,31,26,1,18,19,45,33,48,23,-36,1,53,36,33
%N Sum of deficiencies of the proper divisors of n.
%H Antti Karttunen, <a href="/A296074/b296074.txt">Table of n, a(n) for n = 1..16384</a>
%F a(n) = Sum_{d|n, d<n} A033879(d).
%F a(n) = A296075(n) - A033879(n).
%F Sum_{k=1..n} a(k) ~ (Pi^2/4 - Pi^4/72 - 1) * n^2. - _Amiram Eldar_, Dec 04 2023
%e For n = 6, whose proper divisors are 1, 2, 3, their deficiencies are 1, 1, 2, thus a(6) = 1+1+2 = 4.
%e For n = 12, whose proper divisors are 1, 2, 3, 4, 6, their deficiencies are 1, 1, 2, 1, 0, thus a(12) = 1+1+2+1+0 = 5.
%t f1[p_, e_] := (p^(e+1)-1)/(p-1); f2[p_, e_] := (p*(p^(e+1)-1) - (p-1)*(e+1))/(p-1)^2; a[1] = 0; a[n_] := Module[{f = FactorInteger[n]}, 3 * Times @@ f1 @@@ f - Times @@ f2 @@@ f - 2*n]; Array[a, 100] (* _Amiram Eldar_, Dec 04 2023 *)
%o (PARI)
%o A033879(n) = ((2*n)-sigma(n));
%o A296074(n) = sumdiv(n,d,(d<n)*A033879(d));
%Y Cf. A033879.
%Y Cf. also A294886, A294887, A294888, A294889, A293438 (product of).
%K sign,easy
%O 1,4
%A _Antti Karttunen_, Dec 04 2017