login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324048
a(n) = A000203(n) - A083254(n) = n + sigma(n) - 2*phi(n).
2
0, 3, 3, 7, 3, 14, 3, 15, 10, 20, 3, 32, 3, 26, 23, 31, 3, 45, 3, 46, 29, 38, 3, 68, 16, 44, 31, 60, 3, 86, 3, 63, 41, 56, 35, 103, 3, 62, 47, 98, 3, 114, 3, 88, 75, 74, 3, 140, 22, 103, 59, 102, 3, 138, 47, 128, 65, 92, 3, 196, 3, 98, 95, 127, 53, 170, 3, 130, 77, 166, 3, 219, 3, 116, 119, 144, 53, 198, 3, 202, 94, 128, 3
OFFSET
1,2
LINKS
FORMULA
a(n) = A000203(n) - A083254(n) = n + A000203(n) - 2*A000010(n).
a(n) = A051612(n) + A051953(n).
a(n) = A297159(n) + 2*A001065(n).
Sum_{k=1..n} a(k) = (Pi^2/12 - 6/Pi^2 + 1/2) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 04 2023
MATHEMATICA
a[n_] := n + DivisorSigma[1, n] - 2 * EulerPhi[n]; Array[a, 100] (* Amiram Eldar, Dec 04 2023 *)
PROG
(PARI)
A083254(n) = (2*eulerphi(n)-n);
A324048(n) = (sigma(n) - A083254(n));
(PARI) a(n) = {my(f = factor(n)); n + sigma(f) - 2*eulerphi(f); } \\ Amiram Eldar, Dec 04 2023
KEYWORD
nonn,easy
AUTHOR
Antti Karttunen, Feb 13 2019
STATUS
approved