OFFSET
1,2
FORMULA
a(n) = Product(p_i - 1) * [Sum_{d|n, d<n} d+(A008966(n/d) * d)], where p_i are distinct primes dividing n.
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = 1/zeta(2) - 2 * A307868 + zeta(2)*zeta(3) * Product_{p prime} (1 - 2/p^2 - 1/p^3 + 1/p^4 + 3/p^5 - 2/p^6) = 0.283799589272... . - Amiram Eldar, Dec 08 2023
MATHEMATICA
f[p_, e_] := (p^(e + 1) - 1)/(p - 1); a[1] = 0; a[n_] := Module[{fct = FactorInteger[n], p}, p = fct[[;; , 1]]; Times @@ (p - 1)*(Times @@ f @@@ fct + n*Times @@ (1 + 1/p) - 2*n)]; Array[a, 100] (* Amiram Eldar, Dec 08 2023 *)
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 05 2021
STATUS
approved