login
A353860
Number of collapsible integer compositions of n.
25
0, 1, 2, 2, 5, 2, 12, 2, 26, 9, 36, 2, 206, 2, 132, 40, 677, 2, 1746, 2, 3398, 136, 2052, 2, 44388, 33, 8196, 730, 79166, 2, 263234, 2, 458330, 2056, 131076, 160, 8804349, 2, 524292, 8200, 13662156, 2, 36036674, 2, 48844526, 90282, 8388612, 2, 1971667502, 129
OFFSET
0,3
COMMENTS
If a collapse is a joining of some number of adjacent equal parts of an integer composition, we call a composition collapsible iff by some sequence of collapses it can be reduced to a single part. An example of such a sequence of collapses is (1,1,1,3,2,1,1,2) -> (3,3,2,1,1,2) -> (3,3,2,2,2) -> (6,2,2,2) -> (6,6) -> (12), which shows that (1,1,1,3,2,1,1,2) is a collapsible composition of 12.
LINKS
FORMULA
Sum_{d|n} mu(d)*a(n/d)^d = 1 for n > 0. - Andrew Howroyd, Feb 04 2023
EXAMPLE
The a(0) = 0 through a(6) = 12 compositions:
. (1) (2) (3) (4) (5) (6)
(11) (111) (22) (11111) (33)
(112) (222)
(211) (1113)
(1111) (1122)
(2112)
(2211)
(3111)
(11112)
(11211)
(21111)
(111111)
MATHEMATICA
repcams[q_List]:=repcams[q]=Union[{q}, If[UnsameQ@@q, {}, Union@@repcams/@ Union[Insert[Drop[q, #], Plus@@Take[q, #], First[#]]&/@ Select[Tuples[Range[Length[q]], 2], And[Less@@#, SameQ@@Take[q, #]]&]]]];
Table[Length[Select[Join@@Permutations/@ IntegerPartitions[n], MemberQ[repcams[#], {n}]&]], {n, 0, 15}]
PROG
(PARI) a(n) = if(n==0, 0, 1 - sumdiv(n, d, if(d>1, moebius(d)*a(n/d)^d ))) \\ Andrew Howroyd, Feb 04 2023
CROSSREFS
The version for partitions is A275870, ranked by A300273.
A003242 counts anti-run compositions, ranked by A333489, complement A261983.
A011782 counts compositions.
A353847 represents the run-sums of a composition, partitions A353832.
A353853-A353859 pertain to composition run-sum trajectory.
A353932 lists run-sums of standard compositions.
Sequence in context: A211932 A213642 A344753 * A303073 A068058 A192233
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 04 2022
EXTENSIONS
Terms a(16) and beyond from Andrew Howroyd, Feb 04 2023
STATUS
approved