

A237685


Number of partitions of n having depth 1; see Comments.


20



0, 1, 1, 2, 4, 6, 9, 11, 20, 25, 37, 47, 67, 85, 122, 142, 200, 259, 330, 412, 538, 663, 846, 1026, 1309, 1598, 2013, 2432, 3003, 3670, 4467, 5383, 6591, 7892, 9544, 11472, 13768, 16424, 19686, 23392, 27802, 33011, 39094, 46243, 54700, 64273, 75638, 88765
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

Suppose that P is a partition of n. Let x(1), x(2),...,x(k) be the distinct parts of P, and let m(i) be the multiplicity of x(i) in P. Let f(P) be the partition [m(1)*x(1), m(2)*x(2),...,x(k)*m(k)] of n. Define c(0,P) = P, c(1,P) = f(P), ..., c(n,P) = f(c(n1,P), and define d(P) = least n such that c(n,P) has no repeated parts; d(P) is introduced here as the depth of P. Clearly d(P) = 0 if and only if P is a strict partition, as in A000009. Conjecture: if d >= 0, then 2^d is the least n that has a partition of depth d.


LINKS



EXAMPLE

The 11 partitions of 6 are partitioned by depth as follows:
depth 0: 6, 51, 42, 321;
depth 1: 411, 33, 222, 2211, 21111, 11111;
depth 2: 3111.


MATHEMATICA

z = 60; c[n_] := c[n] = Map[Length[FixedPointList[Sort[Map[Total, Split[#]], Greater] &, #]]  2 &, IntegerPartitions[n]]
Table[Count[c[n], 1], {n, 1, z}] (* this sequence *)
Table[Count[c[n], 2], {n, 1, z}] (* A237750 *)
Table[Count[c[n], 3], {n, 1, z}] (* A237978 *)


CROSSREFS



KEYWORD

nonn,easy


AUTHOR



STATUS

approved



