The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A237684 a(n) = floor(n*prime(n) / Sum_{i<=n} prime(i)). 1
 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,7 COMMENTS a(n) = 1 for n = 8 and 1 <= n <=6. a(n) = 2 for n = 7 and 9 <= n < 10^11 (verified terms). Conjectures: (1): a(n) = 1 or 2 for all n. (2): sequence of numbers n sorted by decreasing values of function f(n) = n*Prime(n) / Sum_i<=n (Prime(i): 48, 35, 31, 25, 17, 49, 33, 69, 32, 26, 43, 38, 12, 63, 102, 67, 68, 37, ... The last term of this sequence is 1. (3): maximal value of function f(n) is for n = 48: f(48) = 10704/4661 = 2.29650289637416... (4): minimal value of function f(n) is for n = 1: f(1) = 1. LINKS Jaroslav Krizek, Table of n, a(n) for n = 1..87 Manuel Kauers and Christoph Koutschan, Some D-finite and some Possibly D-finite Sequences in the OEIS, arXiv:2303.02793 [cs.SC], 2023, p. 4. FORMULA a(n) = floor(A033286(n) / A007504(n)). EXAMPLE For n=8: a(8) = floor(8*Prime(8) / Sum_i<=8 (Prime(i)) = 8*19 / 77 = 1. MATHEMATICA Block[{\$MaxExtraPrecision = 1000, a, t = 0, nn = 120}, Do[(t += #; Set[a[i], Floor[i*#/t]]) &[Prime[i]], {i, nn}]; Array[a, nn] ] (* Michael De Vlieger, Mar 10 2023 *) CROSSREFS Sequence in context: A297784 A043568 A043543 * A130634 A274828 A364136 Adjacent sequences: A237681 A237682 A237683 * A237685 A237686 A237687 KEYWORD nonn AUTHOR Jaroslav Krizek, Feb 21 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 18 10:00 EDT 2024. Contains 374378 sequences. (Running on oeis4.)