login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285410
Sum of the entries in the (n+1)-th blocks of all set partitions of [2n+1].
3
1, 12, 185, 3757, 96454, 3018824, 111964040, 4813480830, 235727269842, 12967143328027, 792113203502422, 53224214308284463, 3902445739220008603, 310108348556403600064, 26551900616231571763742, 2437107937223749442138164, 238735439946016510599661488
OFFSET
0,2
LINKS
FORMULA
a(n) = A285362(2n+1,n+1).
EXAMPLE
a(1) = 12 because the sum of the entries in the second blocks of all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 0+3+2+5+2 = 12.
MAPLE
a:= proc(h) option remember; local b; b:=
proc(n, m) option remember;
`if`(n=0, [1, 0], add((p-> `if`(j=h+1, p+ [0,
(2*h-n+2)*p[1]], p))(b(n-1, max(m, j))), j=1..m+1))
end: b(2*h+1, 0)[2]
end:
seq(a(n), n=0..20);
MATHEMATICA
a[h_] := a[h] = Module[{b}, b[0, _] = {1, 0}; b[n_, m_] := b[n, m] = Sum[ If[j == h + 1, # + {0, (2*h - n + 2)*#[[1]]}, #]&[b[n - 1, Max[m, j]]], {j, 1, m + 1}]; b[2*h + 1, 0][[2]]];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 23 2018, translated from Maple *)
CROSSREFS
Sequence in context: A230345 A166773 A202632 * A218886 A239294 A294409
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 18 2017
STATUS
approved