This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A270529 Sum of the sizes of the (n+1)-th blocks in all set partitions of {1,2,...,2n+1}. 3
 1, 5, 47, 675, 13276, 334751, 10354804, 380797185, 16262852622, 792102157717, 43370872479317, 2638621340623857, 176656418678888190, 12910491906798508171, 1022900642521227415940, 87345042902079159197907, 7997120745886569461943400, 781580696472700788364550933 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..200 Wikipedia, Partition of a set FORMULA a(n) = A270236(2n+1,n+1). a(n) ~ 2^(2*n+1/2) * n^(n-1/2) / (sqrt(Pi*(1-c)) * exp(n) * c^(n+1) * (2-c)^n), where c = -A226775 = -LambertW(-2*exp(-2)) = 0.4063757399599599... . - Vaclav Kotesovec, Mar 19 2016 EXAMPLE a(1) = 5 = 0+1+1+2+1 = sum of the sizes of the second blocks in all A000110(3) = 5 set partitions of 3: 123, 12|3, 13|2, 1|23, 1|2|3. MAPLE b:= proc(n, m, k) option remember; `if`(n=0, [1, 0], add((p->p+       `if`(j=k, [0, p[1]], 0))(b(n-1, max(m, j), k)), j=1..m+1))     end: a:= n-> b(2*n+1, 0, n+1)[2]: seq(a(n), n=0..20); MATHEMATICA b[n_, m_, k_] := b[n, m, k] = If[n == 0, {1, 0}, Sum[# + If[j == k, {0, #[[1]]}, 0]&[b[n - 1, Max[m, j], k]], {j, 1, m + 1}]]; a[n_] := b[2*n + 1, 0, n + 1][[2]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 23 2018, translated from Maple *) CROSSREFS Cf. A000110, A270236, A285410. Sequence in context: A088691 A052802 A098799 * A089155 A254530 A086555 Adjacent sequences:  A270526 A270527 A270528 * A270530 A270531 A270532 KEYWORD nonn AUTHOR Alois P. Heinz, Mar 18 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 10:36 EDT 2019. Contains 323390 sequences. (Running on oeis4.)