login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A270530 a(n) = Sum_{k=0..n}((binomial(2*k,k)/(k+1)*binomial(2*n+2,n-k))). 1
1, 5, 23, 105, 484, 2267, 10821, 52705, 262010, 1328768, 6867266, 36115455, 192954358, 1045481465, 5735154907, 31802349105, 178010615678, 1004542994462, 5709066033900, 32646940202200, 187701954810320 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Binomial transform of Catalan numbers.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

FORMULA

G.f.: 1/(2*x*sqrt(1-4*x))+(-sqrt(((5*x+2*sqrt(1-4*x)-2))/(x^3*(4-16*x)))).

a(n) ~ 5^(2*n + 7/2) / (3^(3/2) * sqrt(Pi) * n^(3/2) * 2^(2*n+4)). - Vaclav Kotesovec, Mar 18 2016

Conjecture: 2*n*(2*n+3)*(n+1)*a(n) -n*(77*n^2+27*n-4)*a(n-1) +(549*n^3-987*n^2+686*n-168)*a(n-2) -20*(2*n-3)*(43*n^2-104*n+70)*a(n-3) +500*(2*n-5)*(n-2)*(2*n-3)*a(n-4)=0. - R. J. Mathar, Jun 07 2016

Conjecture: 2*n*(2*n+3)*(n+3)*(n+1)*a(n) -n*(57*n^3+228*n^2+107*n+8)*a(n-1) +4*(2*n-1) *(33*n^3+99*n^2-88*n+36)*a(n-2) -100*(n-1)*(2*n-1)*(2*n-3)*(n+4)*a(n-3)=0. - R. J. Mathar, Jun 07 2016

MAPLE

A270530 := proc(n)

    add(binomial(2*k, k)/(k+1)*binomial(2*n+2, n-k), k=0..n) ;

end proc: # R. J. Mathar, Jun 07 2016

MATHEMATICA

CoefficientList[Series[1/(2*x*Sqrt[1 - 4*x]) + (-Sqrt[((5*x + 2*Sqrt[1 - 4*x] - 2))/(x^3*(4 - 16*x))]), {x, 0, 50}], x] (* G. C. Greubel, Apr 09 2017 *)

PROG

(Maxima)

a(n):=sum((binomial(2*k, k)/(k+1)*binomial(2*n+2, n-k)), k, 0, n);

makelist(coeff(taylor(1/(2*x*sqrt(1-4*x))+(-sqrt(((5*x+2*sqrt(1-4*x)-2))/(x^3*(4-16*x)))), x, 0, 10), x, n), n, 0, 10);

(PARI) x='x+O('x^50); Vec(1/(2*x*sqrt(1-4*x))+(-sqrt(((5*x+2*sqrt(1-4*x)-2))/(x^3*(4-16*x))))) \\ G. C. Greubel, Apr 09 2017

CROSSREFS

Cf. A000108, A007317, A270447.

Sequence in context: A243873 A239406 A107839 * A128732 A026894 A126473

Adjacent sequences:  A270527 A270528 A270529 * A270531 A270532 A270533

KEYWORD

nonn

AUTHOR

Vladimir Kruchinin, Mar 18 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 05:45 EDT 2019. Contains 323539 sequences. (Running on oeis4.)