This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A270531 a(n) = Sum_{i=1..floor(n/2)} (i*(n-i))!. 1
 0, 0, 1, 2, 30, 744, 403320, 482631120, 22230943262640, 2439304469060699520, 16131709536027319923050880, 265557748777251180632423132716800, 382326737887135184960649117960539544556800, 1405822033408121123332642294795422193345577766681600 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Sum of the factorials of the products of the parts in each partition of n into two parts. LINKS G. C. Greubel, Table of n, a(n) for n = 0..40 FORMULA a(n) ~ (n^2/4)! ~ sqrt(Pi) * n^(n^2/2+1) / (2^((n^2+1)/2) * exp(n^2/4)) if n is even and a(n) ~ ((n^2-1)/4)! ~ sqrt(Pi) * n^((n^2+1)/2) / (2^(n^2/2) * exp(n^2/4)) if n is odd. - Vaclav Kotesovec, Mar 18 2016 EXAMPLE a(4)=30; There are 2 partitions of 4 into two parts: (3,1) and (2,2). The sum of the factorials of the products of the parts in each partition is: (3*1)! + (2*2)! = 3! + 4! = 6 + 24 = 30. MAPLE A270531:=n->add((i*(n-i))!, i=1..floor(n/2)): seq(A270531(n), n=0..15); MATHEMATICA Table[Sum[(i*(n - i))!, {i, Floor[n/2]}], {n, 0, 15}] PROG (PARI) a(n) = sum(k=1, n\2, (k*(n-k))!); \\ Michel Marcus, Mar 22 2016 CROSSREFS Cf. A000142, A023855, A144895. Sequence in context: A160694 A278884 A013525 * A229781 A114938 A082653 Adjacent sequences:  A270528 A270529 A270530 * A270532 A270533 A270534 KEYWORD nonn,easy AUTHOR Wesley Ivan Hurt, Mar 18 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 24 04:42 EDT 2019. Contains 322407 sequences. (Running on oeis4.)