OFFSET
0,6
COMMENTS
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
FORMULA
T(n,k) = A005649(k-1) * binomial(n-1,k-1) for k > 0. - Andrew Howroyd, Dec 31 2020
EXAMPLE
Triangle begins:
1
0 1
0 1 2
0 1 4 8
0 1 6 24 44
0 1 8 48 176 308
0 1 10 80 440 1540 2612
0 1 12 120 880 4620 15672 25988
Row n = 3 counts the following patterns:
(1,1,1) (1,1,2) (1,2,1)
(1,2,2) (1,2,3)
(2,1,1) (1,3,2)
(2,2,1) (2,1,2)
(2,1,3)
(2,3,1)
(3,1,2)
(3,2,1)
MATHEMATICA
allnorm[n_]:=If[n<=0, {{}}, Function[s, Array[Count[s, y_/; y<=#]+1&, n]]/@Subsets[Range[n-1]+1]];
Table[Length[Select[Join@@Permutations/@allnorm[n], Length[Split[#]]==k&]], {n, 0, 5}, {k, 0, n}]
PROG
(PARI) \\ here b(n) is A005649.
b(n) = {sum(k=0, n, stirling(n, k, 2)*(k + 1)!)}
T(n, k)=if(n==0, k==0, b(k-1)*binomial(n-1, k-1)) \\ Andrew Howroyd, Dec 31 2020
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Jul 03 2020
STATUS
approved