login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335458
Number of normal patterns contiguously matched by the n-th composition in standard order (A066099).
35
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 5, 3, 5, 5, 5, 2, 3, 3, 5, 3, 5, 5, 7, 3, 5, 5, 8, 5, 8, 7, 6, 2, 3, 3, 5, 3, 4, 5, 7, 3, 5, 4, 7, 5, 7, 8, 9, 3, 5, 5, 8, 4, 8, 7, 11, 5, 8, 7, 11, 7, 11, 9, 7, 2, 3, 3, 5, 3, 4, 5, 7, 3, 5, 5, 7, 5, 7, 8, 9, 3, 5, 5, 8, 5, 7
OFFSET
0,2
COMMENTS
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a (normal) pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).
FORMULA
a(n) = A335474(n) + 1.
EXAMPLE
The a(180) = 7 patterns are: (), (1), (1,2), (2,1), (1,2,3), (2,1,2), (2,1,2,3).
MATHEMATICA
stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n, 2]], 1], 0]]];
mstype[q_]:=q/.Table[Union[q][[i]]->i, {i, Length[Union[q]]}];
Table[Length[Union[mstype/@ReplaceList[stc[n], {___, s___, ___}:>{s}]]], {n, 0, 30}]
CROSSREFS
The non-contiguous version is A335454.
Summing over indices with binary length n gives A335457(n).
The nonempty version is A335474.
Patterns are counted by A000670 and ranked by A333217.
The n-th composition has A124771(n) distinct consecutive subsequences.
Knapsack compositions are counted by A325676 and ranked by A333223.
The n-th composition has A333257(n) distinct subsequence-sums.
The n-th composition has A334299(n) distinct subsequences.
Minimal avoided patterns are counted by A335465.
Sequence in context: A105264 A063787 A307092 * A335454 A182745 A129843
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 21 2020
STATUS
approved