OFFSET
1,3
COMMENTS
The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.
EXAMPLE
The sequence of terms together with their corresponding compositions begins:
0: () 593: (3,2,4,1) 16937: (5,4,2,3,1)
1: (1) 600: (3,2,1,4) 16940: (5,4,2,1,3)
5: (2,1) 610: (3,1,4,2) 16946: (5,4,1,3,2)
6: (1,2) 616: (3,1,2,4) 16948: (5,4,1,2,3)
37: (3,2,1) 649: (2,4,3,1) 16965: (5,3,4,2,1)
38: (3,1,2) 652: (2,4,1,3) 16966: (5,3,4,1,2)
41: (2,3,1) 657: (2,3,4,1) 16977: (5,3,2,4,1)
44: (2,1,3) 664: (2,3,1,4) 16984: (5,3,2,1,4)
50: (1,3,2) 708: (2,1,4,3) 16994: (5,3,1,4,2)
52: (1,2,3) 712: (2,1,3,4) 17000: (5,3,1,2,4)
549: (4,3,2,1) 786: (1,4,3,2) 17033: (5,2,4,3,1)
550: (4,3,1,2) 788: (1,4,2,3) 17036: (5,2,4,1,3)
553: (4,2,3,1) 802: (1,3,4,2) 17041: (5,2,3,4,1)
556: (4,2,1,3) 808: (1,3,2,4) 17048: (5,2,3,1,4)
562: (4,1,3,2) 836: (1,2,4,3) 17092: (5,2,1,4,3)
564: (4,1,2,3) 840: (1,2,3,4) 17096: (5,2,1,3,4)
581: (3,4,2,1) 16933: (5,4,3,2,1) 17170: (5,1,4,3,2)
582: (3,4,1,2) 16934: (5,4,3,1,2) 17172: (5,1,4,2,3)
MATHEMATICA
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n, 2]], 1], 0]]//Reverse;
Select[Range[0, 1000], #==0||UnsameQ@@stc[#]&&Max@@stc[#]==Length[stc[#]]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 16 2020
STATUS
approved