login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A225620 Indices of partitions in the table of compositions of A228351. 0
1, 2, 3, 4, 6, 7, 8, 10, 12, 14, 15, 16, 20, 24, 26, 28, 30, 31, 32, 36, 40, 42, 48, 52, 56, 58, 60, 62, 63, 64, 72, 80, 84, 96, 100, 104, 106, 112, 116, 120, 122, 124, 126, 127, 128, 136, 144, 160, 164, 168, 170, 192, 200, 208, 212, 224, 228, 232, 234, 240, 244, 248, 250, 252, 254, 255 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Also triangle read by rows in which T(n,k) is the decimal representation of a binary number whose mirror represents the k-th partition of n according with the list of juxtaposed reverse-lexicographically ordered partitions of the positive integers (A026792).

In order to construct this sequence as a triangle we use the following rules:

- In the list of A026792 we replace each part of size j of the k-th partition of n by concatenation of j - 1 zeros and only one 1.

- Then replace this new set of parts by the concatenation of its parts.

- Then replace this string by its mirror version which is a binary number.

T(n,k) is the decimal value of this binary number, which represents the k-th partition of n (see example).

The partitions of n are represented by a subsequence with A000041(n) integers starting with 2^(n-1) and ending with 2^n - 1, n >= 1. The odd numbers of the sequence are in A000225.

First differs from A065609 at a(23).

LINKS

Table of n, a(n) for n=1..66.

EXAMPLE

T(6,8) = 58 because 58 in base 2 is 111010 whose mirror is 010111 which is the concatenation of 01, 01, 1, 1, whose number of digits are 2, 2, 1, 1, which are also the 8th partition of 6.

Illustration of initial terms:

The sequence represents a table of partitions (see below):

--------------------------------------------------------

.            Binary                        Partitions

n  k  T(n,k) number  Mirror   Diagram       (A026792)

.                                          1 2 3 4 5 6

--------------------------------------------------------

.                             _

1  1     1       1    1        |           1,

.                             _ _

1  1     2      10    01      _  |           2,

2  2     3      11    11       | |         1,1,

.                             _ _ _

3  1     4     100    001     _ _  |           3,

3  2     6     110    011     _  | |         2,1,

3  3     7     111    111      | | |       1,1,1,

.                             _ _ _ _

4  1     8    1000    0001    _ _    |           4,

4  2    10    1010    0101    _ _|_  |         2,2,

4  3    12    1100    0011    _ _  | |         3,1,

4  4    14    1110    0111    _  | | |       2,1,1,

4  5    15    1111    1111     | | | |     1,1,1,1,

.                             _ _ _ _ _

5  1    16   10000    00001   _ _ _    |           5,

5  2    20   10100    00101   _ _ _|_  |         3,2,

5  3    24   11000    00011   _ _    | |         4,1,

5  4    26   11010    01011   _ _|_  | |       2,2,1,

5  5    28   11100    00111   _ _  | | |       3,1,1,

5  6    30   11110    01111   _  | | | |     2,1,1,1,

5  7    31   11111    11111    | | | | |   1,1,1,1,1,

.                             _ _ _ _ _ _

6  1    32  100000    000001  _ _ _      |           6

6  2    36  100100    001001  _ _ _|_    |         3,3,

6  3    40  101000    000101  _ _    |   |         4,2,

6  4    42  101010    010101  _ _|_ _|_  |       2,2,2,

6  5    48  110000    000011  _ _ _    | |         5,1,

6  6    52  110100    001011  _ _ _|_  | |       3,2,1,

6  7    56  111000    000111  _ _    | | |       4,1,1,

6  8    58  111010    010111  _ _|_  | | |     2,2,1,1,

6  9    60  111100    001111  _ _  | | | |     3,1,1,1,

6  10   62  111110    011111  _  | | | | |   2,1,1,1,1,

6  11   63  111111    111111   | | | | | | 1,1,1,1,1,1,

.

Triangle begins:

1;

2,   3;

4,   6,  7;

8,  10, 12, 14, 15;

16, 20, 24, 26, 28, 30, 31;

32, 36, 40, 42, 48, 52, 56, 58, 60, 62, 63;

...

CROSSREFS

Column 1 is A000079. Row n has length A000041(n). Right border gives A000225.

Cf. A000041, A026792, A065609, A114994, A135010, A141285, A186114, A194446, A194546, A206437, A207779, A211978, A225600, A225610, A228351.

Sequence in context: A114149 A062974 A065609 * A257282 A221178 A080389

Adjacent sequences:  A225617 A225618 A225619 * A225621 A225622 A225623

KEYWORD

nonn,tabf

AUTHOR

Omar E. Pol, Aug 03 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 23 12:45 EDT 2017. Contains 286915 sequences.