OFFSET
0,5
FORMULA
G.f. A_k(x) of column k satisfies A_k(x) = ( 1 + x * A_k(x)^(1/k) * (1 + A_k(x)^(2/k)) )^k for k > 0.
G.f. of column k: B(x)^k where B(x) is the g.f. of A346626.
B(x)^k = B(x)^(k-1) + x * B(x)^k + x * B(x)^(k+2). So T(n,k) = T(n,k-1) + T(n-1,k) + T(n-1,k+2) for n > 0.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 8, 20, 36, 56, 80, 108, ...
0, 44, 120, 236, 400, 620, 904, ...
0, 280, 800, 1656, 2960, 4840, 7440, ...
0, 1936, 5696, 12192, 22592, 38352, 61248, ...
0, 14128, 42416, 92960, 176800, 308560, 507152, ...
PROG
(PARI) T(n, k, t=1, u=2) = if(k==0, 0^n, k*sum(r=0, n, binomial(n, r)*binomial(t*n+u*r+k, n)/(t*n+u*r+k)));
matrix(7, 7, n, k, T(n-1, k-1))
CROSSREFS
KEYWORD
AUTHOR
Seiichi Manyama, Nov 20 2024
STATUS
approved