login
A378236
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n,r) * binomial(n+2*r+k,n)/(n+2*r+k) for k > 0.
4
1, 1, 0, 1, 2, 0, 1, 4, 8, 0, 1, 6, 20, 44, 0, 1, 8, 36, 120, 280, 0, 1, 10, 56, 236, 800, 1936, 0, 1, 12, 80, 400, 1656, 5696, 14128, 0, 1, 14, 108, 620, 2960, 12192, 42416, 107088, 0, 1, 16, 140, 904, 4840, 22592, 92960, 326304, 834912, 0, 1, 18, 176, 1260, 7440, 38352, 176800, 727824, 2572992, 6652608, 0
OFFSET
0,5
FORMULA
G.f. A_k(x) of column k satisfies A_k(x) = ( 1 + x * A_k(x)^(1/k) * (1 + A_k(x)^(2/k)) )^k for k > 0.
G.f. of column k: B(x)^k where B(x) is the g.f. of A346626.
B(x)^k = B(x)^(k-1) + x * B(x)^k + x * B(x)^(k+2). So T(n,k) = T(n,k-1) + T(n-1,k) + T(n-1,k+2) for n > 0.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 8, 20, 36, 56, 80, 108, ...
0, 44, 120, 236, 400, 620, 904, ...
0, 280, 800, 1656, 2960, 4840, 7440, ...
0, 1936, 5696, 12192, 22592, 38352, 61248, ...
0, 14128, 42416, 92960, 176800, 308560, 507152, ...
PROG
(PARI) T(n, k, t=1, u=2) = if(k==0, 0^n, k*sum(r=0, n, binomial(n, r)*binomial(t*n+u*r+k, n)/(t*n+u*r+k)));
matrix(7, 7, n, k, T(n-1, k-1))
CROSSREFS
Columns k=0..1 give A000007, A346626.
Sequence in context: A329020 A351640 A173003 * A335461 A294411 A274390
KEYWORD
nonn,tabl,new
AUTHOR
Seiichi Manyama, Nov 20 2024
STATUS
approved