OFFSET
9,2
REFERENCES
See A000771.
FORMULA
a(n)= A008277(n, 9).
G.f.: x^9/product_{k=1..9} (1-k*x).
E.g.f.: ((exp(x)-1)^9)/9!.
a(n) = det(|s(i+9,j+8)|, 1 <= i,j <= n-9), where s(n,k) are Stirling numbers of the first kind. - Mircea Merca, Apr 06 2013
MATHEMATICA
lst={}; Do[f=StirlingS2[n, 9]; AppendTo[lst, f], {n, 9, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 27 2008 *)
CoefficientList[Series[1/((1 - x) (1 - 2 x) (1 - 3 x) (1 - 4 x) (1 - 5 x) (1 - 6 x) (1 - 7 x) (1 - 8 x) (1 - 9 x)), {x, 0, 25}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 20 2011 *)
StirlingS2[Range[9, 30], 9] (* Harvey P. Dale, Dec 12 2022 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
STATUS
approved