OFFSET
0,6
LINKS
Robert Israel, Table of n, a(n) for n = 0..574
FORMULA
Let A(0)=1, B(0)=0, C(0)=0 and D(0)=0. Let B(n+1) = Sum_{k=0..n} binomial(n,k)*A(k), C(n+1) = Sum_{k=0..n} binomial(n,k)*B(k), D(n+1) = Sum_{k=0..n} binomial(n,k)*C(k) and A(n+1) = Sum_{k=0..n} binomial(n,k)*D(k). a(n) = A(n), A365526(n) = B(n), A365527(n) = C(n) and A099948(n) = D(n).
G.f.: Sum_{k>=0} x^(4*k) / Product_{j=1..4*k} (1-j*x).
MAPLE
f:= proc(n) local k; add(Stirling2(n, 4*k), k=0..n/4) end proc:
map(f, [$0..30]); # Robert Israel, Sep 11 2024
MATHEMATICA
a[n_] := Sum[StirlingS2[n, 4*k], {k, 0, Floor[n/4]}]; Array[a, 25, 0] (* Amiram Eldar, Sep 11 2023 *)
PROG
(PARI) a(n) = sum(k=0, n\4, stirling(n, 4*k, 2));
(Python)
from sympy.functions.combinatorial.numbers import stirling
def A365525(n): return sum(stirling(n, k<<2) for k in range((n>>2)+1)) # Chai Wah Wu, Sep 08 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 08 2023
STATUS
approved