login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353358
Expansion of e.g.f. exp(log(1 - x)^4).
5
1, 0, 0, 0, 24, 240, 2040, 17640, 182616, 2340576, 34907520, 567732000, 9811675104, 179804319552, 3507724531584, 72964001073600, 1614757714491456, 37860036000293376, 936291898320463872, 24333527620574701056, 662723505438520771584, 18871765275000834201600
OFFSET
0,5
LINKS
FORMULA
E.g.f.: (1 - x)^((log(1 - x))^3).
a(0) = 1; a(n) = 24 * Sum_{k=1..n} binomial(n-1,k-1) * |Stirling1(k,4)| * a(n-k).
a(n) = Sum_{k=0..floor(n/4)} (4*k)! * |Stirling1(n,4*k)|/k!.
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(log(1-x)^4)))
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace((1-x)^(log(1-x)^3)))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=24*sum(j=1, i, binomial(i-1, j-1)*abs(stirling(j, 4, 1))*v[i-j+1])); v;
(PARI) a(n) = sum(k=0, n\4, (4*k)!*abs(stirling(n, 4*k, 1))/k!);
CROSSREFS
Column k=4 of A357882.
Sequence in context: A268966 A014340 A052753 * A353119 A052520 A052724
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 06 2022
STATUS
approved