login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357882
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} (k*j)!* |Stirling1(n,k*j)|/j!.
5
1, 1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 0, 2, 6, 0, 1, 0, 0, 6, 24, 0, 1, 0, 0, 6, 34, 120, 0, 1, 0, 0, 0, 36, 220, 720, 0, 1, 0, 0, 0, 24, 210, 1688, 5040, 0, 1, 0, 0, 0, 0, 240, 1710, 14868, 40320, 0, 1, 0, 0, 0, 0, 120, 2040, 17304, 147684, 362880, 0, 1, 0, 0, 0, 0, 0, 1800, 17640, 194712, 1631376, 3628800, 0
OFFSET
0,9
FORMULA
For k > 0, e.g.f. of column k: exp((-log(1-x))^k).
T(0,k) = 1; T(n,k) = k! * Sum_{j=1..n} binomial(n-1,j-1) * |Stirling1(j,k)| * T(n-j,k).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 0, 0, 0, 0, ...
0, 2, 2, 0, 0, 0, ...
0, 6, 6, 6, 0, 0, ...
0, 24, 34, 36, 24, 0, ...
0, 120, 220, 210, 240, 120, ...
PROG
(PARI) T(n, k) = sum(j=0, n, (k*j)!*abs(stirling(n, k*j, 1))/j!);
(PARI) T(n, k) = if(k==0, 0^n, n!*polcoef(exp((-log(1-x+x*O(x^n)))^k), n));
CROSSREFS
Columns k=0-5 give: A000007, A000142, (-1)^n * A009199(n), A353344, A353358, A353404.
Sequence in context: A132178 A357869 A039655 * A103775 A331594 A093057
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Oct 18 2022
STATUS
approved