Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Oct 19 2022 11:11:39
%S 1,1,0,1,1,0,1,0,2,0,1,0,2,6,0,1,0,0,6,24,0,1,0,0,6,34,120,0,1,0,0,0,
%T 36,220,720,0,1,0,0,0,24,210,1688,5040,0,1,0,0,0,0,240,1710,14868,
%U 40320,0,1,0,0,0,0,120,2040,17304,147684,362880,0,1,0,0,0,0,0,1800,17640,194712,1631376,3628800,0
%N Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} (k*j)!* |Stirling1(n,k*j)|/j!.
%F For k > 0, e.g.f. of column k: exp((-log(1-x))^k).
%F T(0,k) = 1; T(n,k) = k! * Sum_{j=1..n} binomial(n-1,j-1) * |Stirling1(j,k)| * T(n-j,k).
%e Square array begins:
%e 1, 1, 1, 1, 1, 1, ...
%e 0, 1, 0, 0, 0, 0, ...
%e 0, 2, 2, 0, 0, 0, ...
%e 0, 6, 6, 6, 0, 0, ...
%e 0, 24, 34, 36, 24, 0, ...
%e 0, 120, 220, 210, 240, 120, ...
%o (PARI) T(n, k) = sum(j=0, n, (k*j)!*abs(stirling(n, k*j, 1))/j!);
%o (PARI) T(n, k) = if(k==0, 0^n, n!*polcoef(exp((-log(1-x+x*O(x^n)))^k), n));
%Y Columns k=0-5 give: A000007, A000142, (-1)^n * A009199(n), A353344, A353358, A353404.
%Y Cf. A357119, A357869, A357881.
%K nonn,tabl
%O 0,9
%A _Seiichi Manyama_, Oct 18 2022