login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357869
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} (k*j)!* Stirling2(n,k*j)/j!.
3
1, 1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 0, 2, 5, 0, 1, 0, 0, 6, 15, 0, 1, 0, 0, 6, 26, 52, 0, 1, 0, 0, 0, 36, 150, 203, 0, 1, 0, 0, 0, 24, 150, 962, 877, 0, 1, 0, 0, 0, 0, 240, 900, 6846, 4140, 0, 1, 0, 0, 0, 0, 120, 1560, 9366, 54266, 21147, 0, 1, 0, 0, 0, 0, 0, 1800, 8400, 101556, 471750, 115975, 0
OFFSET
0,9
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals)
FORMULA
For k > 0, e.g.f. of column k: exp((exp(x) - 1)^k).
T(0,k) = 1; T(n,k) = k! * Sum_{j=1..n} binomial(n-1,j-1) * Stirling2(j,k) * T(n-j,k).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 0, 0, 0, 0, ...
0, 2, 2, 0, 0, 0, ...
0, 5, 6, 6, 0, 0, ...
0, 15, 26, 36, 24, 0, ...
0, 52, 150, 150, 240, 120, ...
PROG
(PARI) T(n, k) = sum(j=0, n, (k*j)!*stirling(n, k*j, 2)/j!);
(PARI) T(n, k) = if(k==0, 0^n, n!*polcoef(exp((exp(x+x*O(x^n))-1)^k), n));
CROSSREFS
Columns k=0-4 give: A000007, A000110, A052859, A353664, A353665.
Sequence in context: A343156 A163577 A132178 * A039655 A357882 A103775
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Oct 17 2022
STATUS
approved