|
|
A268966
|
|
Number of n X 3 0..2 arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two not more than once.
|
|
1
|
|
|
24, 240, 2016, 15552, 114048, 808704, 5598720, 38071296, 255301632, 1693052928, 11125776384, 72559411200, 470184984576, 3030081011712, 19434312695808, 124128835928064, 789910774087680, 5010291195641856, 31686706480545792
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..210
|
|
FORMULA
|
Empirical: a(n) = 12*a(n-1) - 36*a(n-2).
Conjectures from Colin Barker, Jan 17 2019: (Start)
G.f.: 24*x*(1 - 2*x) / (1 - 6*x)^2.
a(n) = 2^(n+2) * 3^(n-1) * (2*n+1).
(End)
|
|
EXAMPLE
|
Some solutions for n=4:
..1..0..0. .0..1..2. .0..2..2. .2..2..2. .0..0..0. .1..2..1. .1..2..2
..1..1..2. .2..2..2. .1..2..2. .1..2..2. .0..1..0. .2..1..0. .0..1..0
..2..2..2. .1..2..2. .2..2..2. .1..0..1. .2..0..1. .0..0..1. .0..0..1
..2..2..2. .2..1..0. .2..2..2. .1..0..0. .1..0..1. .1..2..1. .0..0..0
|
|
CROSSREFS
|
Column 3 of A268971.
Sequence in context: A000919 A353665 A353775 * A014340 A052753 A353358
Adjacent sequences: A268963 A268964 A268965 * A268967 A268968 A268969
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin, Feb 16 2016
|
|
STATUS
|
approved
|
|
|
|