login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A353774 Expansion of e.g.f. 1/(1 - (exp(x) - 1)^3). 5
1, 0, 0, 6, 36, 150, 1260, 16926, 197316, 2286150, 32821020, 548528046, 9515702196, 174531124950, 3521913283980, 76969474578366, 1777400236160676, 43405229295464550, 1126972561394470140, 30949983774936839886, 893095888222540548756, 27035433957000465352950 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..424

FORMULA

G.f.: Sum_{k>=0} (3*k)! * x^(3*k)/Product_{j=1..3*k} (1 - j * x).

a(0) = 1; a(n) = 6 * Sum_{k=1..n} binomial(n,k) * Stirling2(k,3) * a(n-k).

a(n) = Sum_{k=0..floor(n/3)} (3*k)! * Stirling2(n,3*k).

a(n) ~ n! / (6 * log(2)^(n+1)). - Vaclav Kotesovec, May 08 2022

PROG

(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-(exp(x)-1)^3)))

(PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (3*k)!*x^(3*k)/prod(j=1, 3*k, 1-j*x)))

(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=6*sum(j=1, i, binomial(i, j)*stirling(j, 3, 2)*v[i-j+1])); v;

(PARI) a(n) = sum(k=0, n\3, (3*k)!*stirling(n, 3*k, 2));

CROSSREFS

Cf. A000670, A052841, A353775.

Cf. A143815, A346894, A353118, A353664.

Sequence in context: A056268 A001117 A353664 * A224149 A055404 A223946

Adjacent sequences:  A353771 A353772 A353773 * A353775 A353776 A353777

KEYWORD

nonn

AUTHOR

Seiichi Manyama, May 07 2022

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 29 14:08 EDT 2022. Contains 354913 sequences. (Running on oeis4.)