login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143815 Let A(0)=1, B(0)=0 and C(0)=0. Let B(n+1) = Sum_{k = 0..n} binomial(n,k)*A(k), C(n+1) = Sum_{k = 0..n} binomial(n,k)*B(k) and A(n+1) = Sum_{k = 0..n} binomial(n,k)*C(k). This entry gives the sequence A(n). 13
1, 0, 0, 1, 6, 25, 91, 322, 1232, 5672, 32202, 209143, 1432454, 9942517, 69363840, 490303335, 3565609732, 27118060170, 218183781871, 1861370544934, 16729411124821, 156706028787827, 1514442896327792, 14999698898942772, 151838974745743228, 1571513300578303070 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Compare with A024429 and A024430.
This sequence and its companion sequences B(n) = A143816(n) and C(n) = A143817(n) may be viewed as generalizations of the Bell numbers A000110. Define a sequence R(n) of real numbers by R(n) = Sum_{k >= 0} (3*k)^n/(3*k)! for n = 0, 1, 2, .... It is easy to verify that this sequence satisfies the recurrence relation u(n+3) = 3*u(n+2) - 2*u(n+1) + Sum_{i = 0..n} binomial(n, i)*3^(n-i)*u(i). Hence R(n) is an integral linear combination of R(0), R(1) and R(2). Some examples are given below.
To find the precise form of the linear relation define two other sequences of real numbers by S(n) = Sum_{k >= 0} (3*k+1)^n/(3*k+1)! and T(n) = Sum_{k >= 0} (3*k+2)^n/(3*k+2)! for n = 0, 1, 2, .... Both S(n) and T(n) satisfy the above recurrence. Then by means of the identities S(n+1) = Sum_{i = 0..n} binomial(n, i)*R(i), T(n+1) = Sum_{i = 0..n} binomial(n, i)*S(i) and R(n+1) = Sum_{i = 0..n} binomial(n, i)*T(i) we obtain the result R(n) = A(n)*R(0) + (B(n) - C(n))*R(1) + C(n)*R(2) = A(n)*R(0) + B(n)*R(1) + C(n)*(R(2) - R(1)) (with corresponding expressions for S(n) and T(n)). This generalizes the Dobinski's relation for the Bell numbers Sum_{k >= 0} k^n/k! = A000110(n)*exp(1).
Some examples of R(n) as a linear combination of R(0), R(1) and R(2) - R(1) are given below. The decimal expansions of R(0) = 1 + 1/3! + 1/6! + 1/9! + ..., R(2) - R(1) = 1/1! + 1/4! + 1/7! + ... and R(1) = 1/2! + 1/5! + 1/8! + ... may be found in A143819, A143820 and A143821 respectively. Compare with A143628 through A143631.
For n > 0, the number of partitions of {1,2,...,n} into 3,6,9,... classes. - Geoffrey Critzer, Mar 05 2010
LINKS
Eric Weisstein's World of Mathematics, Bell Polynomial.
FORMULA
a(n) = Sum_{k = 0..floor(n/3)} Stirling2(n, 3*k).
Let w = exp(2*Pi*i/3) and set F(x) = (exp(x) + exp(w*x) + exp(w^2*x))/3 = 1 + x^3/3! + x^6/6! + ... . Then the e.g.f. for the sequence is F(exp(x) - 1).
A143815(n) + A143816(n) + A143817(n) = Bell(n).
E.g.f. is B(A(x)) where A(x) = exp(x) - 1 and B(x) = 1/3 (exp(x) + 2 exp(-x/2) Cos[(Sqrt[3] x)/2]). - Geoffrey Critzer, Mar 05 2010
a(n) = ( Bell_n(1) + Bell_n(w) + Bell_n(w^2) )/3, where Bell_n(x) is n-th Bell polynomial and w = exp(2*Pi*i/3). - Seiichi Manyama, Oct 13 2022
EXAMPLE
R(n) as a linear combination of R(i),
i = 0..2.
====================================
..R(n)..|.....R(0)....R(1)....R(2)..
====================================
..R(3)..|.......1......-2.......3...
..R(4)..|.......6......-5.......7...
..R(5)..|......25......-5......16...
..R(6)..|......91......20......46...
..R(7)..|.....322.....149.....203...
..R(8)..|....1232.....552....1178...
..R(9)..|....5672.....991....7242...
..R(10).|...32202...-3799...43786...
...
Column 2 of the above table is A143818.
R(n) as a linear combination of R(0),R(1)
and R(2) - R(1).
=======================================
..R(n)..|.....R(0).....R(1)...R(2)-R(1)
=======================================
..R(3)..|.......1........1........3....
..R(4)..|.......6........2........7....
..R(5)..|......25.......11.......16....
..R(6)..|......91.......66.......46....
..R(7)..|.....322......352......203....
..R(8)..|....1232.....1730.....1178....
..R(9)..|....5672.....8233.....7242....
..R(10).|...32202....39987....43786....
...
MAPLE
# (1)
M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100):
a[0]:=1: b[0]:=0: c[0]:=0:
for n from 1 to M do
b[n]:=add(binomial(n-1, k)*a[k], k=0..n-1);
c[n]:=add(binomial(n-1, k)*b[k], k=0..n-1);
a[n]:=add(binomial(n-1, k)*c[k], k=0..n-1);
end do:
A143815:=[seq(a[n], n=0..M)];
# (2)
seq(add(Stirling2(n, 3*i), i = 0..floor(n/3)), n = 0..24);
# third Maple program:
b:= proc(n, t) option remember; `if`(n=0, irem(t, 2),
add(b(n-j, irem(t+1, 3))*binomial(n-1, j-1), j=1..n))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..25); # Alois P. Heinz, Feb 20 2018
MATHEMATICA
a = Exp[x] - 1; f[x_] := 1/3 (E^x + 2 E^(-x/2) Cos[(Sqrt[3] x)/2]); CoefficientList[Series[f[a], {x, 0, 20}], x]*Table[n!, {n, 0, 20}] [Geoffrey Critzer, Mar 05 2010]
PROG
(PARI) Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
a(n) = my(w=(-1+sqrt(3)*I)/2); round(Bell_poly(n, 1)+Bell_poly(n, w)+Bell_poly(n, w^2))/3; \\ Seiichi Manyama, Oct 13 2022
CROSSREFS
Sequence in context: A099948 A333017 A277973 * A209241 A369360 A092491
KEYWORD
easy,nonn
AUTHOR
Peter Bala, Sep 03 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 15 12:56 EDT 2024. Contains 374332 sequences. (Running on oeis4.)